Rosefield Solar Farm

Environmental Statement

Volume 4

Appendix 11.3: Ground Investigation Report

EN010158/APP/6.4 September 2025 Rosefield Energyfarm Limited APFP Regulation 5(2)(q)
Planning Act 2008
Infrastructure Planning
(Applications: Prescribed Forms
and Procedure) Regulations 2009

Table of Contents

1.	Introduction	1
	1.1. Purpose of this document	1
	1.2. The Order Limits	1
	1.3. The Proposed Development	1
2.	Ground Investigation Report	2

1. Introduction

1.1. Purpose of this document

1.1.1. This ground investigation factual report has been prepared on behalf of Rosefield Energyfarm Limited ('the Applicant') to obtain geological data across the site, to establish geotechnical properties and identify environmental risks associated with the Proposed Development.

1.2. The Order Limits

- 1.2.1. The extent of the Order Limits is shown in Location, **Order Limits and Grid Coordinate Plans [EN010158/APP/2.1]** and the Proposed Development is described in full in **ES Volume 1, Chapter 3: Proposed Development Description [EN010158/APP/6.1]** and shown spatially on the **Works Plans [EN010158/APP/2.3].**
- 1.2.2. The geotechnical surveys described by this document could not be carried out for the whole extent of the Order Limits due to access constraints. The Applicant intends to carry out further intrusive investigations and produce an interpretative report following the DCO Application, as outlined by the Outline Construction Environmental Management Plan [EN010158/APP/7.2].

1.3. The Proposed Development

- 1.3.1. The Proposed Development comprises the construction, operation (including maintenance), and decommissioning of solar photovoltaic ('PV') development and energy storage, together with associated infrastructure and an underground cable connection to the National Grid East Claydon Substation.
- 1.3.2. The Proposed Development would include a generating station with a total exporting capacity exceeding 50 megawatts ('MW'). The agreed grid connection for the Proposed Development would allow the export and import of up to 500 MW of electricity to the grid.
- 1.3.3. The location of the Proposed Development is shown on **ES Volume 3**, **Figure 1.1**: **Location Plan [EN010158/APP/6.3]**. The Proposed Development would be located within the Order Limits (the land shown on the **Works Plans [EN010158/APP/2.3]** within which the Proposed Development can be carried out). The Order Limits plan is provided as **ES Volume 3**, **Figure 1.2**: **Order Limits [EN010158/APP/6.3]**. Land within the Order Limits is known as the 'Site'.

2. Ground Investigation Report

Rosefield Solar Farm

Ground Investigation Factual Report

2372536 FINAL

CENTRAL ALLIANCE CONTROL SHEET

Project No.: 2372536

Title: Rosefield Solar Farm Preliminary Ground Investigation

Client: EDF

Issue Date: January 25

Office: Central Alliance Pre-Construction Services Limited, (Part of RSK Environment

Limited), Alliance House, South Park Way, Wakefield 41 Business Park,

Wakefield, WF2 0XJ

Version: 2372536-FAC-02

Graduate Geoenvironmental

Engineer

Senior Geo-Environmental Engineer

VERSION CONT	ROL SHEET			
Reference	Date	Status	Amended by	Approved by
FAC-02	17/01/2025	Final		

This report is not to be used for contractual or engineering purposes unless signed by the approver and designated as 'Final'. This report has been prepared for the sole internal use and reliance of the named Client. This report should not be relied upon or transferred to any other parties without the express written authorisation of Central Alliance. If an unauthorised third party comes into possession of the report, they rely on it at their own risk and Central Alliance owes them no duty of care and skill.

CONTENTS

1	INT	RODUCTION		1	
	1.1	COMMISSIONING			
	1.2				
	1.3		S		
	1.4	LIMITATIONS		2	-
2	SIT	E DETAILS		3	,
	2.1				
	2.2		N		
_	2.3				
3	FIE				
	3.1		ORK INFORMATION		
	3.2		OLES		
	3.3 3.4		IVITY TESTINGING		
	3.5		TALLATIONS		
4	LAE	BORATORY TES	TING	8	
	4.1	GEOTECHNICAL L	ABORATORY TESTING	8	3
	4.2		RATORY TESTING		
		495-210 - Grour	nd Investigate Locations Phase1	Exploratory Hole Location Plan	
	TABLES	•			
•	Table 2	? - Site Geology (Superficial)	4	
-	Table 3	- Site Geology (Solid Geology)	5	
	APPEN	DICES			
	Apper		Exploratory Hole Logs		
	Apper		Exploratory Hole Photographs		
	Apper		Thermal Resistivity Testing		
	Apper		Soakaway Test Results		
	Apper		Geotechnical Laboratory Testing Results		
	Apper		Chemical Laboratory Testing Results		
	Ahhai	IUIX F	Chemical rapolatory leading results		

1 INTRODUCTION

1.1 Commissioning

Central Alliance Pre-Construction Services Limited (Central Alliance) was instructed by EDF to undertake intrusive ground investigation at their site across the the Claydon Estate and the surrounding land in Buckinghamshire. Central Alliance was commissioned to provide the following for the project:

- A factual description of the work undertaken
- Exploratory hole logs
- Dynamic Probing logs
- Dynamic Cone Penetration (DCP) logs
- Soakaway Test Results
- Thermal resistivity testing results
- Laboratory testing results

1.2 Objectives

The objective of the ground investigation was to obtain geological data across the site, to establish geotechnical properties and identify environmental risks to inform Engineering Procurement Construction (EPC) tender designs for the proposed development.

1.3 Scope of works

The scope of the investigation was designed by WSP as provided within the received specification document 'Rosefield Solar Project - Preliminary GI Specification_Issue 3a'.

The scope included:

- 4No. Machine Excavated Trial Pits to a target depth of 3.0m bgl.
- 55No. Window Sample boreholes/Machine Excavated Trial Pits to a target depth of either 5.00m or 3.00m bgl or refusal respectively.
- 9No. Hand Excavated trial pits & DCP (solar array areas) to a target depth of 1.50m bgl.
- 24No. Hand Excavated Trial Pits & DCP to a target depth of 1.50m bgl.
- In-situ geotechnical testing to include SPT's & Dynamic Probe Super Heavy (DPSH) in all Window Sample holes.
- Dynamic Cone Penetration Test (DCP) in conjunction with all hand excavated trial pits at 24 selected locations.
- 4No. Soakaway tests.
- Thermal Conductivity tests at all Machine Excavated Trial Pits.

Final exploratory hole locations were agreed on site between the Client and Central Alliance, following consideration of the existing site conditions and site access

restrictions. Details of the works completed, including any deviation from the scope of work, is identified in **Section 3**.

1.4 Limitations

This report presents a description of the site at the time of the fieldwork, results of the fieldwork, in-situ testing undertaken, strata encountered and geotechnical and/or chemical test results.

There may be other conditions prevailing at the site which have not been disclosed by this investigation and which have not been considered by this report. Responsibility cannot be accepted for conditions at the site not revealed by the investigation and confirmation of intermediate ground conditions between exploratory holes should be considered if deemed necessary.

Unless instructed by the Client, Central Alliance is not obliged to and disclaims any obligation to update the report for events taking place after the date on which this investigation was undertaken.

2 SITE DETAILS

2.1 Site location

The site is located 10km South of Buckingham around and within the Claydon estate in Botolph Claydon. The site generally consists of open fields divided by a network of minor roads, farm access tracks, farm properties, and small wooded copses and hedgerows.

Site location details are presented in **Table 1** and satellite imagery of the area is presented in **Figure 1**.

Table 1 - Site Location

Site name	Rosefield Solar Farm
Full site address and postcode	Peartree Grain Store, Queen Catherine Road, Steeple Claydon
National Grid reference	SP709264

Figure 1: Site location (Google Earth®, 2024)

2.2 Site Description

The site in Phase 1 was bound to 3No. areas:

Area 1 is a series of agricultural fields surrounding Pond Farm to the West, and Three Points Lane to the East. It extends to within 400m East of the town of Calvert, in

between which is the High Speed 2 (HS2) rail line. Access is gained from Three Points Lane and from the farm access track for Pond Farm.

Area 2 is the largest area and is bound by Clayton Lane to the East. It consists of a series of fields directly South of the village of Botolph Claydon, extending to the South of Runt's wood. Access is gained using a farm track from Orchard Way on the Northern boundary of the site. Access is controlled via the use of a Claydon Estate-owned padlocked gate.

Area 3 is a single field to the NE of the other two areas located adjacent to the East of East Claydon National Grid Sub-station. This field is privately owned and not a part of the Claydon Estate. Access is granted from East Claydon Road and by the private farmyard directly adjacent to the field to the North.

Between the areas, the area for phase 1 spans roughly 335ha. The greater area is made up of farmland used by different tenant-farmers on behalf of the Claydon estate or privately farmed land. Pockets of ancient woodlands are also preserved throughout the area.

2.3 Site Geology

2.3.1 Made Ground

Made Ground is indicated to be present at the location due to the nature of the site, deposits associated with farming are likely to be encountered.

2.3.2 Anticipated geological sequence

Published records (British Geological Survey, BGS) for the area indicate the geology of the site to be characterised by the strata recorded in **Tables 2** and **3**, seen below

Table 2 - Site Geology (Superficial)

Strata	Description							
Glaciofluvial Deposits, Mid Pleistocene	Sand and gravel. Sedimentary superficial deposit formed between 860 and 116 thousand years ago during the Quaternary period.							
Glacial Deposits	Clay, silt and sand. Sedimentary superficial deposit formed between 2.588 million and 11.8 thousand years ago during the Quaternary period.							
Alluvium	Clay, silt, sand and gravel. Sedimentary superficial deposit formed between 11.8 thousand years ago and the present during the Quaternary period.							
Relevant information sources: BGS Geology Viewer BGS Geoindex Previous SI reports								

Table 3 - Site Geology (Solid Geology)

Strata	Description							
Stewartby Member	Mudstone. Sedimentary bedrock formed between 166.1 and 163.5 million years ago during the Jurassic period.							
Weymouth Member	Mudstone. Sedimentary bedrock formed between 163.5 and 157.3 million years ago during the Jurassic period.							
West Walton Formation	Mudstone. Sedimentary bedrock formed between 163.5 and 157.3 million years ago during the Jurassic period.							
Relevant information sources: BGS Geology Viewer BGS Geoindex Previous SI reports								

3 FIELDWORK

3.1 General Fieldwork Information

The ground investigation works were completed between Monday 4th November to Friday 8th November 2024 with works completed during normal weekday shifts.

The fieldwork was carried out in general accordance with Eurocode 7, BS5930:2015+A1:2020 - 'Code of Practice for Ground Investigations'; BS10175 'Investigation of potentially contaminated sites – Code of Practice' (2001); Association of Geotechnical and Geo-environmental Specialist Guidelines for Good Practice in Geotechnical Ground Investigation (June 2016) and logged in accordance with BS EN ISO 14688-1:2018 and BS EN ISO 14688-2:2018. Dynamic Probing was undertaken in accordance with BS EN ISO 22476-2 (2005).

The final locations of exploratory holes were determined by the presence of underground services, practicalities, and any site access restrictions. The locations of exploratory holes are provided on drawing 70096495-210 - Ground Investigate Locations Phase1 with coordinates and levels recorded on the individual exploratory hole logs presented as Appendix A. All backfilling was completed to a sufficient standard upon the immediate completion of each ground investigation location, as requested by the client.

3.2 Exploratory Holes

The exploratory holes were completed using a combination of window sampling, dynamic probing, machine excavated trial pitting/trenching, hand dug pitting, and a DCP. The logging, sampling and subsampling of the exploratory holes were completed by a suitably qualified Geo-Environmental Engineer provided by Central Alliance.

The completed scope of works was as follows:

- 5No. Dynamic Sampled boreholes (All for solar array areas) completed to maximum depths between 3.80m and 5.00m bgl, with Dynamic Probing adjacent.
- 5No. Machine Excavated Trial Pits (3No. for solar array areas, 2No. for cable routes) completed to a maximum depth of 3.00m bgl, with thermal resistivity testing.
- 18No. Hand Excavated Trial Pits (12No. for solar array areas, 2No. for cable routes and 4No. for the haul road) completed to maximum depths between 1.30m and 1.50m bgl, with DCP adjacent.
- 2No. Soakaway tests.

This reduced number of exploratory holes was agreed prior to the ground investigation initialising due to the access arrangements that Gateley Hamer (land agent) had agreed with the various landholders and Claydon Estate at the time.

7No. Hand excavated pits were terminated before their 1.50m bgl target depth due to the ground conditions found which made their advancement too difficult. HP019 was terminated early due to water ingress and ground conditions.

TP014 was required to be moved 500mm West of the initial position due to the uncovering of a terracotta land drain. All Trial Pits reached scheduled depth.

For full details of the strata encountered, groundwater strikes, samples taken, in-situ testing, logging legend sheet, and calibration certificates please refer to the individual exploratory hole records presented as Appendix A.

Photographs of recovered samples, trial pit, and hand pit excavations, are provided as Appendix B.

3.3 Thermal Resistivity Testing

During the excavation of trial pits TP002, TP003, TP©001, TP©011 and TP014 in-situ Thermal Resistivity testing was undertaken between 6th November and 8th November 2024 by Structural Soils Ltd in accordance with IEEE442-2017 standards. All test results are presented in Appendix C.

3.4 Soakaway Testing

On the 6th and 7th November 2024 soakaway testing was undertaken within TP002 and TP014. The trial pits were excavated to 1.50m and water was then discharged over a short period. The test results are presented in Appendix D.

3.5 Monitoring Installations

No monitoring installations were fitted in any of the ground investigation locations on request of the client.

4 LABORATORY TESTING

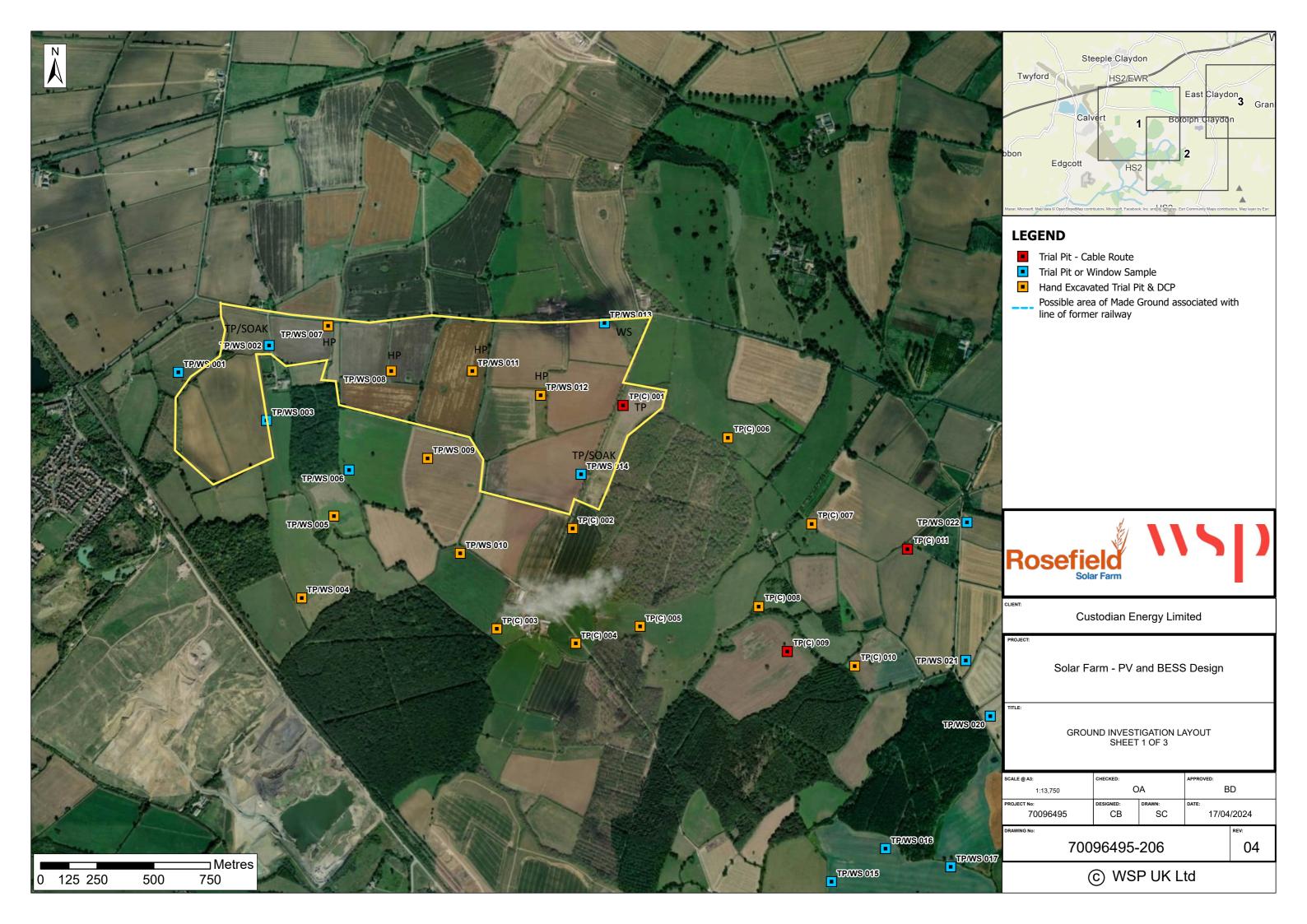
4.1 Geotechnical Laboratory Testing

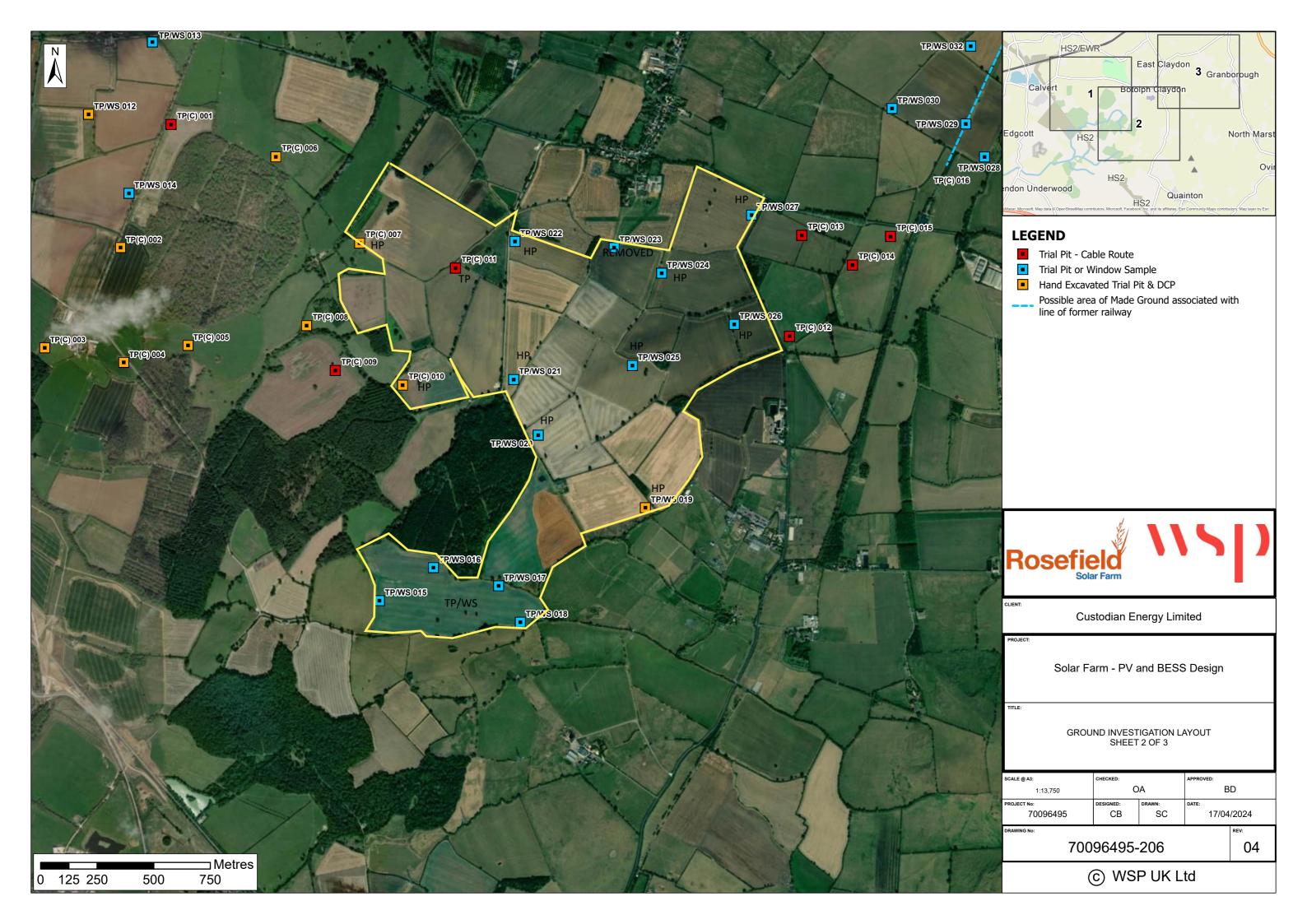
Laboratory testing was scheduled by WSP on selected soil samples recovered during the investigation. The samples were sent to lan Farmer Associates at their testing facility in Washington, Tyne and Wear.

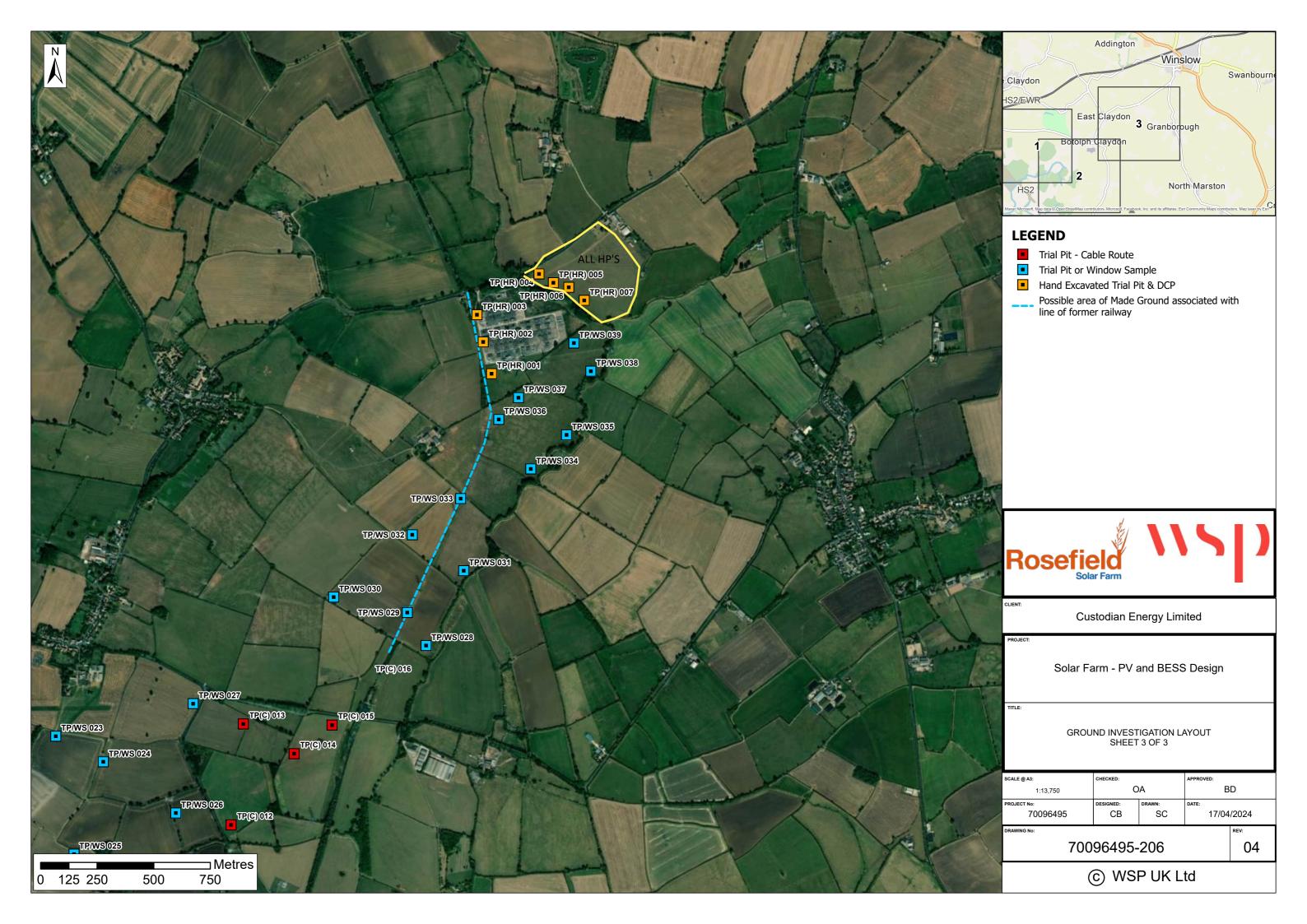
All testing has been carried out in accordance with the laboratory's UKAS accreditation following lab standards set out in BS EN INO 17892.

Completed geotechnical laboratory testing results are presented as Appendix E.

4.2 Chemical Laboratory Testing


Chemical testing was scheduled by WSP on selected samples recovered during the ground investigation. The samples were sent to Envirolab at their laboratory in Hyde, Greater Manchester.


All testing was carried out in accordance with the laboratory's UKAS accreditation.

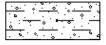

Completed chemical laboratory testing results are presented as Appendix F.

DRAWING

Appendix A Exploratory Hole Logs

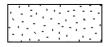
EXPLORATORY HOLE LEGEND SHEET

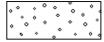
STRATA LEGENDS


TOPSOIL

MADE GROUND

CLAY


SANDY GRAVELLY **CLAY**

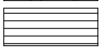

ORGANIC CLAY

SILT

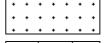
SAND

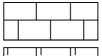
GRAVEL

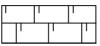
SAND & GRAVEL


PEAT

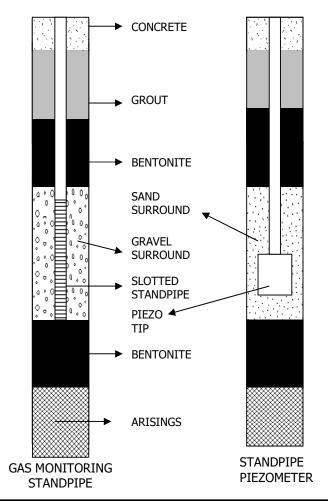
COBBLES


BOULDERS


MUDSTONE


SILTSTONE

SANDSTONE



LIMESTONE

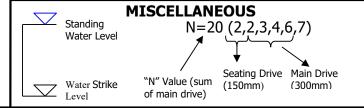
CHALK

INSTALLATIONS / BACKFILL

SAMPLE & IN SITU TESTS

В	Bulk Disturbed Sample
D	Disturbed Sample

Water Sample ES Environmental Soil Sample Environmental Water Sample EW


Undisturbed Sample U Undisturbed Thin Wall Sample UT

Ρ Piston Sample S SPT (Split Spoon) С CPT / Core Sample

ΗV Hand Vane

W

PID Photo Ionisation Detector

Exploratory Hole Number HP(C)007

FINAL

Log Type

Inspection Pit

Sheet 1 of 1 2372536 Location Details Project No: Methodology & Plant Scale: 1:30 472067.46 Northing: 224124.04 Checked By: Easting: МВ Name: **Rosefield Solar Farm** Hand Pit Elevation: 111.28mAOD Final Depth: 1.50m Approved By: MB Peartree Grain Store, Steeple Claydon Location: Start Date: Logger: $\boldsymbol{\mathsf{AW}}$ Grid System: **OSGB** 05/11/2024 Hand Tools Client: Finish Date: 05/11/2024 EDF Orientation: N/A Inclination: 90°

	Strata Description	Legend	Depth (m) (Stratum	Reduced Level	Water	Installation /			Samples & Testing
		Legend	Thickness)	(mAOD)	Level (m)	Backfill	Depth (m)	Ref	Test Results
	TOPSOIL: (farmed surface) Grass over brown slightly gravelly slightly clayey fine to coarse SAND. Gravel is angular to rounded fine to coarse quartz.						0.10 - 0.20	1 B	:
	,						0.30	2 D	
-	From 0.40m, Becomes clayey.		(0.80)				0.30	20	:
-	,,,								-
	Grey slightly gravelly very sandy CLAY. Gravel is angular to subangular quartz. Sand is yellow		0.80	110.48					
1 -	to grey fine to coarse.						0.90 - 1.00	3 B	1-
			(0.70)						:
	5 422 54 4 14								
	From 1.30m, Colour becomes greyish yellow.						1.40	4 D	
-	EOH at 1.50m - Scheduled Depth		1.50	109.78		V//XV//X			-
									:
2 -									2 -
-									
-									
3 -									3 -
-									-
									-
4 -									4 -
-									=
5 -									5 -
									:
									-
									-
6 -									6 -
Obs	ervations / Remarks	Bre	eaking Out /	/ Hard Strata	a	Stabil	lity & Backf	ill	Pit Dimensions

Observations / Remarks

Breaking Out / Hard Strata
Stability & Backfill
Pit Dimensions

From (m)
Remarks
Shoring:
Stability:
Stability:
Orientation:
orientation:

Exploratory Hole Number **HP(C)010**

Backfill: Arisings

Log Type

Inspection Pit +44(0)1924 229889 **FINAL** Sheet 1 of 1 Methodology & Plant 2372536 Project No: Location Details Scale: 1:30 Easting: 472236.09 Northing: 223510.98 Checked By: MB Rosefield Solar Farm Name: Hand Pit Elevation: 106.98mAOD Final Depth: 1.50m Approved By: MB Location: Peartree Grain Store, Steeple Claydon Logger: RW Grid System: OSGB Start Date: 06/11/2024 Hand Tools Client: EDF Orientation: N/A Inclination: 90° Finish Date: 06/11/2024 Depth (m) (Stratum Thickness) Samples & Testing Installation / Backfill Strata Description Legend (mAOD) Ref Test Results Depth (m) TOPSOIL: Firm brown gravelly sandy CLAY. Sand is fine to medium. Gravel is subangular fine 0.00 - 0.30 2 B to medium chalk and flint. (0.30)1 ES 0.20 0.30 106.68 0.30 - 0.60 3 B Stiff orangish brown gravelly slightly sandy CLAY. Gravel is subangular fine to medium chalk. (0.30)0.50 5 D 0.60 106.38 Stiff grey gravelly CLAY. Gravel is subangular fine to medium chalk. 1.00 1.00 - 1.50 (0.90)105.48 EOH at 1.50m - Scheduled Depth Observations / Remarks Breaking Out / Hard Strata Stability & Backfill Pit Dimensions From (m) Remarks Shoring: m Orientation:

Exploratory Hole Number HP(HR)004

(...,

Inspection Pit

Log Type

				+44(0)192	4 229889	FINAL				Sheet 1 of 1			
Project No: 2372536			Locati	tion Details			Methodology & Plant				Scale:	1:30	
Nan		Rosefield Solar Farm	Easting:	475302.77	Northing:	226129.	40					Checked By:	MB
INGII	ic.	Noseriela Joiai Fariii	Elevation:	86.80mAOD	Final Depth	: 1.50m			Hand	Pit		Approved By:	MB
Loca	ation:	Peartree Grain Store, Steeple Claydon	Logger:	RW	Grid System	n: OSGB				Fa a la		Start Date:	07/11/2024
Clie	nt:	EDF	Orientation:	N/A	Inclination:	90°			Hand 1	10015		Finish Date:	07/11/2024
		0.10.10				Depth (m)	Reduced Level	Water	Installation /			Samples & Testing	
		Strata Description			Legend	(Stratum Thickness)	(mAOD)	Level (m)	Backfill	Depth (m)	Ref	Test Results	5
-		L: Soft slightly gravelly slightly sandy CLAY. Sand is fine to n	nedium. Gra	ivel is	XXXXX				XXXXX	0.00 - 0.30	2 B		-
-	subang	ular fine to medium chalk.				(0.30)				0.20	1 ES		
-	Soft are	eyish brown sandy slightly gravelly CLAY. Sand is fine to med	dium Grave	l ic cubangular		0.30	86.50			0.30 - 0.60	3 B		-
-	fine to	medium chalk.	aidiii. Grave	i is subuligulai	316.	(0.30)							-
-					3) (2	0.60	86.20			0.50	5 D		-
-	Stiff gre	ryish brown slightly sandy CLAY. Sand is fine to medium.											-
-													
1 -										1.00 - 1.50	4 B		1 -
-						(0.90)							1
-													-
-													-
-		EOH at 1.50m - Scheduled Depth				1.50	85.30			1.50	6 D		=
1		EOFI AL 1.50III - Scrieduled Depth											-
-													-
-													-
2 -													2 -
-													
-													=
-													-
-													-
-													=
-													-
3 -													3 -
-													-
-													-
-													=
-													-
-													-
-													-
-													
4 -													4 -
-													
-													-
-													-
-													-
-													=
-													-
5 -													5 -
- -													3 - -
-													-
-													
-													_
-													-
-													-
-													-
6 -					+								6 -
c.		(0)				11	111 15						
Obs	ervations /	Kemarks			From (m)	aking Out	/ Hard Strat Remarks	a		ity & Backf	II	Pit Dimer	nsions
					, ,				Shoring:			m	
									Stability:				m
												Orientatio	ın:
					1	1			In ten a			i .	

Exploratory Hole Number HP(HR)005

Log Type **Inspection Pit**

FINAL

Sheet 1 of 1 Methodology & Plant Project No: 2372536 Location Details Scale: 1:30 475385.94 Easting: Northing: 226091.65 Checked By: MB Rosefield Solar Farm Name: Hand Pit Elevation: 86.50mAOD Final Depth: 1.50m Approved By: MB Location: Peartree Grain Store, Steeple Claydon Grid System: OSGB Logger: RW Start Date: 07/11/2024 Hand Tools Client: EDF Orientation: N/A Inclination: 90° Finish Date: 07/11/2024 Depth (m) (Stratum Thickness) Samples & Testing Installation / Backfill Strata Description Legend (mAOD) Ref Test Results Depth (m) 0.00 - 0.30 TOPSOIL: Soft brown sandy CLAY. Sand is fine to medium. 2 B (0.30)1 ES 0.20 0.30 86.20 0.30 - 0.60 3 B Soft orangish brown sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is subangular fine to medium chalk. (0.30)0.50 5 D 0.60 85.90 Stiff grey slightly gravelly CLAY. Gravel is subangular fine to medium chalk. 1.00 - 1.50 4 B (0.90)6 D 85.00 EOH at 1.50m - Scheduled Depth Observations / Remarks Breaking Out / Hard Strata Stability & Backfill Pit Dimensions From (m) Remarks Shoring: m Orientation: Backfill: Arisings

Exploratory Hole Number HP(HR)006

Inspection Pit

Log Type

FINAL

Sheet 1 of 1 Scale: 1:30

m

Orientation:

Stability:

Backfill: Arisings

2372536 Location Details Project No: Methodology & Plant 475490.31 Northing: Checked By: Easting: 226053.06 МВ Name: **Rosefield Solar Farm** Hand Pit Elevation: 86.66mAOD Final Depth: 1.50m Approved By: MB Peartree Grain Store, Steeple Claydon Location: 07/11/2024 Start Date: Logger: RW Grid System: **OSGB** Hand Tools Client: Finish Date: 07/11/2024 EDF Orientation: N/A Inclination: 90°

Clie	nt: EDF Orientation: N/A	Inclinat	ion: 9	90°						Finish Date: 07/11/2	024
			De	epth (m)	Reduced Level	Water	Installation /			Samples & Testing	
	Strata Description	Legen	d (9	(Stratum hickness)	(mAOD)	Level (m)	Backfill	D			
	TORCOLL Caff hazarra annulu CLAV Candia For the all Pro-	V///×V	//2				X///XX///X	Depth (m) 0.00 - 0.30	Ref 2 B	Test Results	Щ
-	TOPSOIL: Soft brown sandy CLAY. Sand is fine to medium.		%]	(= ==)				0.00 - 0.30	20		1
-			(A)	(0.30)				0.20	1 ES		- 1
-	Soft greyish brown slightly gravelly slightly sandy CLAY. Sand is fine to medium. Gravel is		//	0.30	86.36			0.30 - 0.60	3 B		1
-	subangular fine to medium chalk.	S	T- ,,	(0.20)							-
-	Subangular fille to fileufum chaik.		- ((0.30)				0.50	5 D		-
-	Soft orangish brown very gravelly slightly sandy CLAY. Sand is fine to medium. Gravel is		(0.60	86.06						- 1
	subangular fine to medium chalk and flint.										}
			-								1
											1
1 -			(((0.90)				1.00 - 1.50	4 B		1 -
-				,							1
:		1 - 1	-								1
-			-								1
-				4.50	05.46						1
-	EOH at 1.50m - Scheduled Depth			1.50	85.16			1.50	6 D		7
-											1
-											- 1
											-
2 -											2 -
-											2
:											1
-											1
-											1
-											4
-											- 1
-											
											3
											-
3 -											3 –
-											1
-											1
-											1
-											1
-											-
-											-
-											1
-											1
4 -											4
											1
-											1
-											- 1
											3
-											+
											1
											4
											1
-											_ 1
5 -											5 -
											3
											3
											3
											4
											4
:											1
											1
											4
6 -			_								6 -
Oho	L ervations / Remarks		Rreakii	ing Out	l / Hard Strata	a	Ctahil	lity & Backfi	II.	Pit Dimensions	-
ODS	ervations / nemalits	From		iiig Out /	Remarks	-		icy & DdCKII			-
		110111	,		nemarks		Shoring:			m	

Exploratory Hole Number HP(HR)007

Inspection Pit

Log Type

FINAL

Sheet 1 of 1

m

Orientation:

Stability:

Backfill: Arisings

2372536 Location Details Project No: Methodology & Plant Scale: 1:30 475490.31 Northing: 226053.06 Checked By: Easting: МВ Name: **Rosefield Solar Farm** Hand Pit Elevation: 86.66mAOD Final Depth: 1.50m Approved By: MB Location: Peartree Grain Store, Steeple Claydon Start Date: 07/11/2024 Logger: RW Grid System: OSGB Hand Tools 07/11/2024 Client: EDF Finish Date: Orientation: N/A Inclination: 90°

	Strata Description	Legend	Depth (m) (Stratum	Reduced Level	Water	Installation /			Samples & Testing
			Thickness)	(mAOD)	Level (m)	Backfill	Depth (m)	Ref	Test Results
	TOPSOIL: Soft brown sandy CLAY. Sand is fine to medium.						0.00 - 0.30	2 B	-
			(0.30)				0.20	1 ES	=
	Soft greyish brown slightly sandy CLAY. Sand is fine to medium.		0.30	86.36					=
							0.50	5 D	-
							0.50 - 0.90	3 B	-
									=
			(4.20)						=
1 -			(1.20)				1.00 - 1.40	4 B	1
									=
-	EOH at 1.50m - Scheduled Depth		1.50	85.16			1.50	6 D	_
	EOTT at 1.30III - Scrieduled Deput								=
									=
									=
2 -									2 =
									-
									=
-									= = = = = = = = = = = = = = = = = = = =
									=
									-
3 -									3 -
									-
									=
									=
									-
. :									
4 -									4 -
									-
									=
5 -									5 -
									=
:									=
-									=
:]
:									=
6 -									6 -
Obs	ervations / Remarks			/ Hard Strata Remarks	а	Stabi	lity & Backfi	II	Pit Dimensions
		From (m)		remarks		la ·			m

Exploratory Hole Number **HP007**

Inspection Pit

FINAL

iispection Fit

m

Orientation:

Stability:

Backfill: Arisings

Log Type

Sheet 1 of 1 2372536 Location Details Methodology & Plant Project No: Scale: 1:30 469950.56 224995.55 Checked By: Easting: МВ Northing: Name: **Rosefield Solar Farm** Hand Pit Elevation: MB 88.67mAOD Final Depth: 1.30m Approved By: Location: Peartree Grain Store, Steeple Claydon Start Date: 04/11/2024 Logger: AW Grid System: **OSGB** Hand Tools Client: 04/11/2024 EDF Finish Date: Orientation: N/A Inclination: 90°

	Strata Description	Legend	Depth (m) (Stratum	Reduced Level	Water	Installation /			Samples & Testing
		Legend	Thickness)	(mAOD)	Level (m)	Backfill	Depth (m)	Ref	Test Results
-	MADE GROUND: Grass over soft yellowish brown slightly gravelly silty CLAY. Gravel is subangular to rounded fine to medium quartz and chalk.		(0.15) 0.15	88.52			0.15 - 0.30	1 B	-
	Firm yellowish grey mottled yellow slightly gravelly CLAY. Gravel is angular to subangular fine		0.13	00.52					
-	to medium quartz.						0.40	2 D	-
-									-
-			(1.15)						
			(1.15)						
1 -	At 1.00m, Becomes stiff.								1 -
-									:
	EOH at 1.30m - Refusal		1.30	87.37		V/A\V/A\			:
-									=
-									
-									
-									
2 -									2 -
-									:
-									: -
-									
									-
3 -									3 -
-									
-									:
									:
-									
-									
4 -									4 -
-									:
									-
-									
=									- :
-									:
-									
5 -									5 -
-									
-									
-									=
=									
6 -									6 -
	L servations / Remarks	Bre	eaking Out ,	/ Hard Strata	a	Stabil	lity & Backfi	11	Pit Dimensions
1) T	Ferminated at 1.30m due to stiffness of clay, little progress made after 30 minutes.	From (m)		Remarks		Shoring:			m

Exploratory Hole Number **HP008**

008 | _{Ir}

Inspection Pit

Log Type

FINAL

Sheet 1 of 1 2372536 Project No: Location Details Methodology & Plant Scale: 1:30 Easting: 470192.79 Northing: 224786.86 Checked By: MB Rosefield Solar Farm Name: Hand Pit Elevation: 90.29mAOD Final Depth: 1.30m Approved By: MB Peartree Grain Store, Steeple Claydon Location: Logger: AW Grid System: OSGB Start Date: 04/11/2024 Hand Tools Client: EDF Orientation: N/A Inclination: 90° Finish Date: 04/11/2024 Depth (m) (Stratum Thickness) Samples & Testing Installation , Backfill Strata Description Legend Ref Test Results Depth (m) MADE GROUND: Firm yellow brown slightly gravelly slightly sandy silty CLAY with roots and $rootlets. \ Sand \ is \ fine. \ Gravel \ is \ subangular \ to \ subrounded \ fine \ to \ medium \ flint, \ mudstone,$ 0.20 0.20 - 0.40 0.30 chalk and brick. (0.50) After 0.30m, Brick and chalk absent. 0.50 89.79 Firm light yellow grey heavily mottled yellow and orange slightly gravelly CLAY. Gravel is angular to subrounded fine to medium chalk, mudstone and quartz. 0.70 - 0.80 At 1.00m, Becomes stiff. 1.30 5 D 88.99 1.30 EOH at 1.30m - Refusal Observations / Remarks Breaking Out / Hard Strata Stability & Backfill Pit Dimensions From (m) Remarks Shoring: m Orientation: Backfill: Arisings

2372536

Project No:

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44(0)1924 229889

Location Details

Exploratory Hole Number **HP011**

FINAL

Log Type

Inspection Pit

Sheet 1 of 1 Methodology & Plant Scale: 1:30 Checked By: MB

			Easting:	470622.47	Northing:	224781.	11		1011104010	5, 0. 1 10111		Checked By: M	R
	Nam	Noserieu Solai Fariii							Hand	Pit			
١,	Loca		Elevation:	90.95mAOD	Final Depth:							Approved By: M	
ď	LUCA		Logger:	AW	Grid System	: OSGB			Hand 1	Fools		Start Date: 04/11/	2024
(Clien	: EDF	Orientation:	N/A	Inclination:	90°			- Tana	.00.5		Finish Date: 04/11/	2024
						Depth (m)						Samples & Testing	
		Strata Description			Legend	(Stratum Thickness)	Reduced Level (mAOD)	Water Level (m)	Installation / Backfill				_
L						THICKHESS			*///*	Depth (m)	Ref	Test Results	
	- ‡	MADE GROUND: Firm dark yellowish brown slightly gravelly silty C	LAY. Gravel	is angular to		(0.20)				0.10	1 D	HV 0.10m, (p)=35 kPa (r)=8 kPa	1
	1	subangular fine to coarse quartz, brick, chalk and mudstone.				0.20	90.75			0.20 - 0.30	2 B		1
	- 1	MADE GROUND: Firm light yellow grey heavily mottled yellow sligh	ntly gravelly	slightly sandy									1
	- 1	silty CLAY. Sand is fine to medium. Gravel is angular to subrounded quartz, chalk and coal.	iiie to coa	rse brick,									1
	-1	quartz, chaik and coal.				(0.60)				0.50	3 ES	HV 0.50m, (p)=38 kPa (r)=10 kPa	- 1
	- 1												7
	- 1												7
	1	Firm to stiff light blue grey heavily mottled yellow slightly gravelly s	lightly can	dy CLAV Sand	**************************************	0.80	90.15						- 1
]	is fine to medium. Gravel is subangular to subrounded fine to med		uy CLAT. Saliu	31C - 3 - 1/1/2					0.90	4 D		3
	1	is the to mediam craver is subungalar to subrounded fine to med	idiii ciidiii		316 - 311								1 -
					316 - 31	(0.70)							1
						(0.70)				1.20 - 1.40	5 B		1
	- 1				41C - 41C								1
	- ‡				310 - 31 310 - 34 J								1
	†	EOH at 1.50m - Scheduled Depth			7 * *	1.50	89.45		V//XV//X				7
	- 1												1
	- 1												1
	- 1												1
	_ 1												_ =
	2 -												2 -
	-												
													1
	4												
	- 1												1
	- 1												1
	1												1
	- 1												1
	3												3 -
	- 1												7
	- 1												3
]												3
	-												3
	-												-
													1
	1												1
													1
	- 1												1
	4 =												4 -
	1												7
	-												3
	3												3
]]
													‡
	- ‡												‡
	1												1
	5 -												5 -
	- 1												1
	1												1
	- 1												- 1
	}												3
	-}												
	}												3
													1
													‡
	‡												1
	6												6 -
L													
-	Obse	vations / Remarks			Brea	aking Out ,	/ Hard Strata	а	Stabil	ity & Backfi	11	Pit Dimensions	
Γ					From (m)		Remarks		Shoring:			m	
									Stability:				m
									,.				
									Backfill: Ar	risings		Orientation:	
-1					I	1			I	-		l	

Exploratory Hole Number

Log Type

HP012 Inspection Pit +44(0)1924 229889 **FINAL** Sheet 1 of 1 Methodology & Plant Project No: 2372536 Location Details Scale: 1:30 470875.71 Easting: Northing: 224698.09 Checked By: MB Name: **Rosefield Solar Farm** Hand Pit Elevation: 91.50mAOD Final Depth: 1.50m Approved By: MB Location: Peartree Grain Store, Steeple Claydon Grid System: OSGB Logger: AW Start Date: 04/11/2024 Hand Tools Client: EDF Orientation: N/A Inclination: 90° Finish Date: 04/11/2024 Depth (m) (Stratum Thickness) Samples & Testing Strata Description Depth (m) Test Results MADE GROUND: Grass over soft grey brown locally mottled yellow slightly gravelly silty CLAY. Gravel is angular to subangular fine to medium brick and quartz. From 0.20m, No brick found - assumed natural. 0.30 3 D HV 0.30m, (p)=22 kPa (r)=5 kPa From 0.30m, Mottling throughout, no longer localised. 0.70 - 0.80 (1.50) From 0.90m, Primary colour is light grey. Becomes firm. 1.30 5 D 1.40 6 B 1.50 90.00 EOH at 1.50m - Scheduled Depth

Observations / Remarks Breaking Out / Hard Strata Stability & Backfill Pit Dimensions From (m) Remarks Shoring: m Orientation: Backfill: Arisings

Exploratory Hole Number **HP019**FINAL

Stability:

Backfill: Arisings

Orientation:

019 Inspection Pit

Sheet 1 of 1

Log Type

2372536 Location Details Methodology & Plant Project No: Scale: 1:30 473353.86 222929.53 Checked By: Easting: МВ Northing: Name: **Rosefield Solar Farm** Hand Pit Elevation: MB 107.59mAOD Final Depth: 1.40m Approved By: Location: Peartree Grain Store, Steeple Claydon Start Date: 05/11/2024 Logger: AW Grid System: OSGB

LUCA	tion: Peartree Grain Store, Steepie Claydon	Logger:	AW	Grid System	: OSGB			Hand 1	Fools		Start Date: 05/	11/2024
Clien	t: EDF	Orientation:	N/A	Inclination:	90°			папи	ioois		Finish Date: 05/	11/2024
					Depth (m)						Samples & Testing	
	Strata Description			Legend	(Stratum Thickness)	Reduced Level (mAOD)	Water Level (m)	Installation / Backfill				
	TOPSOIL: Soft greyish brown slightly gravelly silty CLAY with rootlets to rounded fine quartz and chalk.	s. Gravel is	subrounded		(0.50)				Depth (m)	Ref	Test Results	
	Firm light yellow grey mottled orange yellow slightly gravelly CLAY. subrounded fine chalk.	Gravel is su	bangular to		0.50	107.09			0.50 - 0.70	1 B		-
1-	From 1.00m, Locally mottled.				(0.90)				0.80	2 D		1 -
	EOH at 1.40m - Abandoned due to water ing	ress		* * * * * * * * * * * * * * * * * * * *	1.40	106.19			1.20 - 1.30	3 B		
-												
2 -												2 -
												-
3 -												3 =
												- - - - - -
4												4
												- - - -
5 -												5 -
1												- - -
6												6 -
Obse	ervations / Remarks			Bre	aking Out	/ Hard Strati	a Stability & Backfill				Pit Dimension	s
1) Te	rminated at 1.40m due to water ingress and stiffness.			From (m)		Remarks		Shoring:			m	
												m

Exploratory Hole Number **HP020**

FINAL

Log Type

Inspection Pit

Sheet 1 of 1 Location Details Project No: 2372536 Methodology & Plant Scale: 1:30 Easting: 472835.72 Northing: Checked By: 223250.89 MB Name: **Rosefield Solar Farm** Hand Pit Elevation: 111.85mAOD Final Depth: 1.40m Approved By: MB Location: Peartree Grain Store, Steeple Claydon Logger: AW Grid System: OSGB Start Date: 05/11/2024 Hand Tools

Clie	Client: EDF Orientation: N/A		Inclination:	Inclination: 90°			Hand	00IS	Finish Date: 05/11/2024	
	Strata Description			Depth (m)	Reduced Level	Water	Installation /			Samples & Testing
			Legend	(Stratum Thickness)	(mAOD)	Level (m)	Backfill	Depth (m)	Ref	Test Results
	MADE GROUND: (farmed surface) Soft brown slightly gravelly slightly sandy silty CLAY. Sand		********				X//XX//X			-
	fine. Gravel is angular to rounded fine to coarse brick, quartz and chalk. [TOPSOIL].			(0.30)				0.20	1 ES	-
				0.30	111.55			0.20	1 ES]
	Firm light yellow grey mottled orange yellow slightly gravelly CLAY. rounded fine to medium quartz and chalk.	Gravel is subangular to						0.40 - 0.60	2 B	-
	- rounded line to medium quartz and chark.									_
	From 0.60m, Localised mottling.									-
				(1.10)				0.90	3 D	-
1 -	-									1-
	From 1.10m, Stiff.									-
								1.20 - 1.40	4 B	
	1 1			4.40	440.45]
	EOH at 1.40m - Refusal			1.40	110.45]
										-
										-
										=
2 -										2 -
										-
]]
	- -									=
										-
3 -										3 -
	-									-
]
	1									=
										-
	-									-
4 -	_									4 =
										-
]
	- -									-
]
	1]
]									=
	1]
	- -									=
5 -										5 -
										-
	1]
										-
]									=
]
]									
6 -			\vdash							6
Ob	servations / Remarks			aking Out ,	/ Hard Strata		Stabil	ity & Backfi		Pit Dimensions
1)	1) Terminated at 1.40m due to stiffness of ground.		From (m)		Remarks		Shoring:			m

Observations / Remarks

1) Terminated at 1.40m due to stiffness of ground.

From (m) Remarks
Stability:
Stability:
Backfill: Arisings
Orientation:

Exploratory Hole Number **HP021**

Inspection Pit

Log Type

FINAL

Sheet 1 of 1 2372536 Location Details Project No: Methodology & Plant Scale: 1:30 Easting: 472806.58 Northing: 223591.30 Checked By: MB Rosefield Solar Farm Name: Hand Pit Elevation: 114.65mAOD Final Depth: 1.40m Approved By: MB Peartree Grain Store, Steeple Claydon Location: Logger: AW Grid System: OSGB Start Date: 05/11/2024 Hand Tools Client EDF Orientation: N/A Inclination: 90° Finish Date: 05/11/2024 Samples & Testing Installation , Backfill Strata Description Legend Thickness) Depth (m) Test Results Ref MADE GROUND: (farmed surface) Soft brown slightly gravelly slightly sandy silty CLAY with rootlets. Sand is fine. Gravel is angular to rounded fine to medium chalk and quartz. (0.40)[TOPSOIL]. 0.40 114.25 $Firm \ yellow \ grey \ heavily \ mottled \ yellow \ orange \ slightly \ gravelly \ slightly \ sandy \ silty \ CLAY.$ 2 B 0.50 - 0.60 Sand is fine to medium. Gravel is subangular to rounded fine to medium chalk and quartz. <u>...</u> ----×× From 0.60m, Locally mottled. (0.50)0.90 113.75 Stiff blueish grey locally mottled yellow orange slightly gravely CLAY. Gravel is angular to ---subangular fine to medium chalk. (0.50)1.40 113.25 1.40 3 D EOH at 1.40m - Scheduled Depth Observations / Remarks Breaking Out / Hard Strata Stability & Backfill Pit Dimensions From (m) Remarks Shoring: m Orientation: Backfill: Arisings

Exploratory Hole Number **HP022**

Log Type

Inspection Pit

FINAL

Sheet 1 of 1 Methodology & Plant 2372536 Project No: Location Details Scale: 1:30 472748.51 Easting: Northing: 224142.29 Checked By: MB Rosefield Solar Farm Name: Hand Pit Elevation: 110.40mAOD Final Depth: 1.30m Approved By: MB Location: Peartree Grain Store, Steeple Claydon Grid System: OSGB Logger: AW Start Date: 05/11/2024 Hand Tools Client: EDF Orientation: N/A Inclination: 90° Finish Date: 05/11/2024 Depth (m) (Stratum Thickness) Samples & Testing Installation , Backfill Strata Description Legend Depth (m) Test Results Ref MADE GROUND: (farmed surface) Soft brown slightly gravelly slightly sandy silty CLAY. Sand 1 ES is fine. Gravel is angular to rounded fine to medium quartz, chalk and brick. [TOPSOIL]. (0.40)110.00 0.40 $Firm \ yellow \ grey \ mottled \ yellow \ orange \ slightly \ gravelly \ silty \ CLAY. \ Gravel \ is \ subangular \ to$ rounded fine chalk. 0.60 - 0.80 2 B (0.90) 1.20 3 D 109.10 1.30 EOH at 1.30m - Refusal Breaking Out / Hard Strata Stability & Backfill Pit Dimensions From (m) Remarks 1) Terminated at 1.30m due to stiffness of ground. Shoring: m Backfill: Arisings

Exploratory Hole Number **HP024**

Inspection Pit

Log Type

m

Orientation:

Stability:

Backfill: Arisings

FINAL

Sheet 1 of 1 2372536 Location Details Methodology & Plant Project No: Scale: 1:30 473414.32 224018.34 Checked By: Easting: МВ Northing: Name: **Rosefield Solar Farm** Hand Pit Elevation: 105.16mAOD Final Depth: 1.50m Approved By: MB Peartree Grain Store, Steeple Claydon Location: Start Date: 06/11/2024 Logger: RW Grid System: OSGB Hand Tools Client: Finish Date: 06/11/2024 EDF Orientation: N/A Inclination: 90°

(Clien	t: EDF	Orientation: N/A	Inclination:	90°			Tiunu i			Finish Date: 06/11/	2024
					Depth (m)	Reduced Level	Water	Installation /			Samples & Testing	
		Strata Description		Legend	(Stratum Thickness)	(mAOD)	Level (m)	Backfill	Depth (m)	Ref	Test Results	$\overline{}$
F		TORCOU. CHIEf harmon alimbah, annually alimbah, annual CLAV Condin E.	and the second in the second in	X//XX///X				X///XX///X	0.00 - 0.30	2 B	lest Results	
	1	TOPSOIL: Stiff brown slightly gravelly slightly sandy CLAY. Sand is fir subangular fine to medium chalk and flint.	ne to medium. Gravel is		(0.00)							-
	- 1	Subangular line to medium chaik and liint.			(0.30)				0.15 0.20	6 D 1 ES		1
	1				0.30	104.86						1
	1	Stiff orangish brown sandy CLAY. Sand is fine to medium.							0.40 - 0.80	3 B		1
	1											-
	1				(0.60)							1
	1											1
	1								0.75	5 D		1
	1			×	0.90	104.26						1
	1	Stiff slightly silty slightly sandy CLAY.		X					1.00 - 1.50	4 B		1 -
	1			X								- 1
	4			<u> </u>	(0.60)							1
	1				(1
	1			X— —								1
	1			$\frac{-}{\times}$ $\frac{\times}{\cdot}$ $\frac{}{\cdot}$	1.50	103.66						
	- 1	EOH at 1.50m - Scheduled Depth										1
	- 1											1
	2 -											2 -
1	- 1											
	-											1
	-											-
	1											
												1
	-											
	-											-
	-											
١.	Ŀ											
-	3 –											3 -
	}											-
	-											-
	}											-
	-											-
	}											-
	}											3
	}											
	-											-
	٤.											
ľ	4 -											4 -
	-											-
	-											
	-											}
	1											_
												-
	1											
	-											
1.	5 -											5 -
'	´											ے ۔
	-											}
	-											}
	1											3
]											7
	}											7
	7											7
												7
	. 1			<u> </u>								_ 1
'	6 🕇											6 -
L												
C	Obse	rvations / Remarks				/ Hard Strata	a	Stabil	ity & Backfi	II	Pit Dimensions	
				From (m)		Remarks		Shoring:			m	
1				I	1							

Exploratory Hole Number **HP025**

Log Type

Inspection Pit

FINAL

Sheet 1 of 1 2372536 Location Details Project No: Methodology & Plant Scale: 1:30 473258.93 Easting: Northing: 223605.56 Checked By: MB Rosefield Solar Farm Name: Hand Pit Elevation: 102.39mAOD Final Depth: 1.40m Approved By: MB Peartree Grain Store, Steeple Claydon Location: Logger: AW Grid System: OSGB Start Date: 05/11/2024 Hand Tools Client EDF Orientation: N/A Inclination: 90° Finish Date: 05/11/2024 Samples & Testing Installation Strata Description Legend Thickness) Test Results Depth (m) Ref MADE GROUND: (farmed surface) Soft brown slightly gravelly slightly sandy silty CLAY with 1 ES roots and rootlets. Sand is fine. Gravel is angular to subrounded fine to medium quartz, (0.40)chalk and brick. 0.40 101.99 $Firm \ yellow \ grey \ heavily \ mottled \ yellow \ orange \ slightly \ gravelly \ slightly \ sandy \ silty \ CLAY.$ 2 B 0.50 - 0.70 Sand is fine to coarse. Gravel is subangular to rounded fine to medium mudstone, quartz <u>>¢</u> and chalk. (0.50)0.80 - 0.90 0.85 From 0.80m to 0.90m, Very sandy and gravelly. 0.90 101.49 Stiff blueish grey locally mottled yellow orange slightly gravelly CLAY. Gravel is angular to ... 1.00 - 1.20 subangular fine to medium chalk. (0.50)1.40 100.99 1.40 6 D EOH at 1.40m - Refusal Breaking Out / Hard Strata Stability & Backfill Pit Dimensions From (m) Remarks 1) Terminated at 1.40m due to stiffness of ground. Shoring: m Orientation: Backfill: Arisings

Exploratory Hole Number **HP026**

Inspection Pit

FINAL

Log Type

Sheet 1 of 1 2372536 Project No: Location Details Methodology & Plant Scale: 1:30 473726.11 Easting: Northing: 223753.29 Checked By: MB Rosefield Solar Farm Name: Hand Pit Elevation: 97.67mAOD Final Depth: 1.50m Approved By: MB Location: Peartree Grain Store, Steeple Claydon Grid System: OSGB Logger: RW Start Date: 06/11/2024 Hand Tools Client: EDF Orientation: N/A Inclination: 90° Finish Date: 06/11/2024 Depth (m) (Stratum Thickness) Samples & Testing Strata Description Legend (mAOD) Ref Test Results Depth (m) 0.00 - 0.30 TOPSOIL: Stiff brown gravelly sandy CLAY. Gravel is subangular to subrounded fine to 2 B medium chalk and flint. (0.30)1 ES 0.20 0.30 97.37 Stiff orangish brown gravelly sandy CLAY. Sand is fine to medium. Gravel is subangular fine to medium chalk and flint. 0.50 - 0.80 3 B (0.60) 0.75 5 D 0.90 96.77 :::: Stiff grey gravelly CLAY. Gravel is subangular fine to medium chalk. 1.00 - 1.50 4 B 6 D 96.17 EOH at 1.50m - Scheduled Depth Observations / Remarks Breaking Out / Hard Strata Stability & Backfill Pit Dimensions From (m) Remarks Shoring: m Backfill: Arisings

Exploratory Hole Number **HP027**

Inspection Pit

FINAL

Log Type

Sheet 1 of 1 Methodology & Plant 2372536 Scale: Project No: Location Details 1:30 Easting: 473823.32 224265.58 Northing: Checked By: MB Name: Rosefield Solar Farm Hand Pit Elevation: 97.67mAOD Final Depth: 1.50m Approved By: MB Location: Peartree Grain Store, Steeple Claydon Grid System: OSGB Logger: RW Start Date: 06/11/2024 Hand Tools Client: EDF Orientation: N/A Inclination: 90° Finish Date: 06/11/2024 Depth (m) (Stratum Thickness) Samples & Testing Installation , Backfill Strata Description Legend Ref Test Results Depth (m) 0.00 - 0.30 TOPSOIL: Stiff brown slightly gravelly slightly sandy CLAY. Sand is fine to medium. Gravel is 2 B angular to subangular fine to medium chalk and flint. (0.30)1 ES 0.20 97.37 0.30 Stiff greyish brown sandy CLAY. Sand is fine to medium. 3 B (0.50) 0.75 5 D 0.80 96.87 Stiff grey gravelly CLAY. Gravel is angular to subangular fine to coarse chalk. 4 B (0.70) 96.17 6 D EOH at 1.50m - Scheduled Depth Observations / Remarks Breaking Out / Hard Strata Stability & Backfill Pit Dimensions From (m) Remarks Shoring: m Backfill: Arisings

Exploratory Hole Number **TP(C)001**

Trial Pit

Log Type

FINAL Sheet 1 of 1 Location Details 2372536 Scale: Project No: Methodology & Plant 1:30 471217.24 Easting: Northing: 224643.95 Checked By: MB Rosefield Solar Farm Name: Machine Excavated Pit Flevation: 88.57mAOD Final Depth: 3.00m Approved By: MB Location: Peartree Grain Store, Steeple Claydon Logger: AW Grid System: OSGB Start Date: 07/11/2024 Tracked Excavator Client EDF Orientation: N/A Inclination: 90° Finish Date: 07/11/2024 Samples & Testing Reduced Lev Installation Strata Description Legend Backfill Thickness) Depth (m) Test Results MADE GROUND: Grass over soft to firm brown slightly gravelly slightly sandy silty CLAY with (0.20) roots and rootlets. Sand is fine to medium. Gravel is angular to subrounded fine to medium 0.20 88.37 0.20 - 0.40 2 B quartz, brick and chalk. Firm yellowish brown locally mottled grey slightly gravelly slightly sandy silty CLAY. Sand is HV 0.35m, (p)=90 kPa (r)=22 kPa fine. Gravel is angular to subrounded fine to medium quartz, mudstone and chalk. (0.60)HV 0.60m, (p)=76 kPa (r)=18 kPa 0.70 3 D HV 0.75m, (p)=94 kPa (r)=23 kPa 0.80 87.77 0.80 - 0.90 0.85 4 B 5 D Soft yellowish orange gravelly very sandy silty CLAY. Sand is fine to coarse. Gravel is (0.10)87.67 subangular to rounded fine to coarse quartz. × × 0.90 Firm grey mottled yellow orange sandy silty CLAY. Sand is fine to coarse. From 1.20m, Becomes slightly gravelly. Gravel is angular to subangular fine to medium quartz. 1.30 - 1.50 6 B 1.90 7 D (2.10)2.90 9 D 3.00 85.57 EOH at 3.00m - Scheduled Depth Observations / Remarks Breaking Out / Hard Strata Stability & Backfill Pit Dimensions Depth Top (m) Depth Base (m) Duration (hh:mm) Shoring m Orientation: Backfill: Arisings

Exploratory Hole Number **TP(C)011**

Log Type

Trial Pit

FINAL Sheet 1 of 1 2372536 Location Details Project No: Methodology & Plant Scale: 1:30 472493.75 Easting: Northing: 224015.84 Checked By: MB Rosefield Solar Farm Name: Machine Excavated Pit Elevation: N/A Final Depth: 3.00m Approved By: MB Peartree Grain Store, Steeple Claydon Location: Logger: AW Grid System: OSGB Start Date: 08/11/2024 Tracked Excavator Client EDF Orientation: N/A Inclination: 90° Finish Date: 08/11/2024 Samples & Testing Reduced Levi Installation , Strata Description Legend Backfill Thickness) Test Results Depth (m) MADE GROUND: Grass over soft brown slightly gravelly slightly sandy silty CLAY with roots. (0.20) Gravel is angular to subrounded fine to coarse brick, chalk, quartz and coal. 0.20 0.20 - 0.40 2 B Firm becoming stiff grey heavily mottled yellow orange slightly gravelly slightly sandy silty CLAY. Gravel is angular to subrounded fine to medium quartz and chalk. HV 0.40m, (p)=70 kPa (r)=17 kPa HV 0.60m, (p)=140 kPa (r)=35 kPa At 0.60m, Becomes stiff. 0.80 3 D HV 0.80m, (p)=130 kPa (r)=30 kPa From 1.00m. Colour becomes blueish arev. 1.30 - 1.50 4 B (2.80)1.90 5 D From 2.30m, Frequent shell fragments. 2.90 7 D 3.00 EOH at 3.00m - Scheduled Depth Observations / Remarks Breaking Out / Hard Strata Stability & Backfill Pit Dimensions Depth Top (m) Depth Base (m) Duration (hh:mm) Shoring: m Orientation: Backfill: Arisings

Exploratory Hole Number **TP002**

02 Trial Pit

FINAL

Log Type

	<u> </u>									Sheet 1 of 1		
Project No:	2372536		tion Details			N	/lethodolo	gy & Plant		Scale: 1:30		
Name:	Rosefield Solar Farm	Easting: 469675.80	Northing:	224884	.62		Machine Ex	cavated Pit		Checked By: MB		
ocation:	Peartree Grain Store, Steeple Claydon	Elevation: 91.12mAOD Logger: AW	Final Depth Grid Systen							Approved By: MB Start Date: 06/11/20		
lient:	EDF	Orientation: N/A	Inclination:				Tracked E	xcavator		Finish Date: 06/11/20		
T				Depth (m)						Samples & Testing		
	Strata Description		Legend	(Stratum Thickness)	Reduced Leve (mAOD)	Water Level (m)	Installation / Backfill	Depth (m)	Ref	Test Results		
- MADE	E GROUND: Grass over firm brown slightly gravelly slightly sa	ndy silty CLAY. Sand is fine					XXXXX	Departing.	THE I	reserves		
to coa	arse. Gravel is angular to subrounded fine to coarse brick and	d quartz.		(0.25)				0.15	1 ES			
	rellowish grey mottled yellowish orange slightly gravelly sligh		******	0.25	90.87			0.30 - 0.50	2 B	HV 0.30m, (p)=110 kPa (r)=25 kPa		
- coarse	e. Gravel is subangular to rounded fine to coarse quartz and	chalk.								HV 0.50m, (p)=94 kPa (r)=23 kPa		
1				(0.65)						114 0.5011, (p)=54 kF8 (1)=25 kF8		
1												
1				0.90	90.22			0.80 0.90 - 1.10	3 D 4 B	HV 0.80m, (p)=100 kPa (r)=25 kPa		
	pluish grey locally mottled yellowish orange slightly gravelly C unded fine to coarse quartz and chalk.	CLAY. Gravel is subangular		0.50	30.22							
10.00	and a mile to course quarte and chark.											
1												
1								1.40	5 D			
-												
1								1.60 - 1.80	6 B			
1												
. =				(2.10)				1.90	7 D			
7												
1												
1								2.30 - 2.50	8 B			
_												
3												
1								2.80	9 D			
1												
1	EOH at 3.00m - Scheduled Depth			3.00	88.12		X///XX///					
]												
1												
1												
1												
1												
1												
1												
1												
]												
1												
1												
1												
1												
1												
1												
=												
1												
1												
. 1												
 oservation	ns / Remarks		Bre	eaking Out	/ Hard Strat	a	Stabi	lity & Backf	L ill	Pit Dimensions		
	y test undertaken at 1.50m bgl.		Depth Top (n			n (hh:mm)	Shoring: N			3.00m		
										2.5		
							Stability: St	table		2.5		
							Rackfill. *	risings		Orientation:		
							Backfill: A	rialiiR2		۰		

Exploratory Hole Number TP003

Trial Pit

Log Type

1.50m

Orientation:

Stability: Stable

Backfill: Arisings

FINAL Sheet 1 of 1

2372536 Location Details Project No: Methodology & Plant Scale: 1:30 469757.91 Northing: 224516.61 Easting: Checked By: МВ Name: **Rosefield Solar Farm** Machine Excavated Pit Elevation: 94.34mAOD Final Depth: 3.00m Approved By: MB Location: Peartree Grain Store, Steeple Claydon 06/11/2024 Start Date: Logger: $\boldsymbol{\mathsf{AW}}$ Grid System: OSGB Tracked Excavator Client: Finish Date: 06/11/2024 EDF Orientation: N/A Inclination: 90°

	Clien	it: EDF	Orientation: N/A	Inclination:	90°			Huckey E			Finish Date: 06/11,	/2024	
					Depth (m)	Reduced Level	Water	Installation /			Samples & Testing		
		Strata Description		Legend	(Stratum Thickness)	(mAOD)	Level (m)	Backfill	Depth (m)	Ref	Test Results	$\neg \neg$	ł
ŀ		MADE GROUND: Grass over firm brown slightly gravelly slightly sai	ndy silty CLAY Sand is fine					\\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Depth (iii)	IVEI	restriesdits	Щ.	ļ
	=	Gravel is angular to subrounded fine to coarse quartz and brick.	ia, siic, cz iii saiia is iiiici		(0.30)				0.10	1 ES			
	1												
		Firm greyish yellow mottled yellowish orange slightly gravelly CLAY	. Gravel is subangular to		0.30	94.04			0.30 - 0.50	2 B	HV 0.40m, (p)=50 kPa (r)=12 kPa		1
	3	subrounded fine to coarse quartz and chalk.									ην υ.φυπ, (μ)=30 κτα (1)=12 κτα	-	1
	4				(0.65)						HV 0.60m, (p)=60 kPa (r)=15 kPa		1
	1				(0.03)								1
	3								0.80	3 D	HV 0.80m, (p)=60 kPa (r)=15 kPa		ł
	1			· · · · ·	0.95	93.39							1
		Stiff bluish grey mottled orangish yellow slightly gravelly CLAY. Gravelly and the state of the	vel is angular to	<u> </u>								1 -	1
	1	subangular fine to medium quartz.											ł
]								1.30 - 1.50	4 B		-	1
		From 1.30m, Common yellow sand & gravel pockets. Sand is medium to coarse. Grifine to coarse mudstone and quartz.	avel is angular to subangular						1.50 - 1.50	40		-	1
	4	file to course moustone and quarter										-	
	1												1
]											-	1
	4											-	
	1				(2.05)				1.90	5 D			1
	2 -	At 2.00m, 75mm thick lense of sand & gravel. Sand is medium to coarse. Gravel is a	angular to subangular fine to		(2.03)							2 -	1
]	coarse mudstone and quartz.										-	1
	-								2.30 - 2.50	6 B		-	l
	1											-	
		From 2.50m, Pockets become rare.										-	
	3	Tom Eisony's ociclo occome rate.										-	1
	-												1
	4												
	3				3.00	91.34			2.90	7 D		2 -	
	³	EOH at 3.00m - Scheduled Depth			3.00	31.34						3 -	
	1												1
]											-	1
	4												
	3											-	ł
	-												1
	=											-	1
	1												ł
	4											4 -	
	4												
	4												1
	-]											-	
	4											-	
	4												1
	1												
]												1
												-	-
	5 -											5 -	1
]											-	
	-											-	
	4											-	
	- 1												
	4												1
													1
	_ =							<u></u>					
	6											6 -	
ŀ	Oher	ervations / Remarks		Rr.	aking Out	/ Hard Strat	l	(tahil	lity & Backfi	11	Pit Dimensions		l
ŀ				Depth Top (n			n (hh:mm)				3.00m		l
				Separ top (II	., Deptil base	. viii) Duration	- youradiii)	Shoring: N	one		3.0011		ĺ

TP014

Trial Pit

FINAL

Exploratory Hole Number

Log Type

Sheet 1 of 1 Location Details 2372536 Project No: Methodology & Plant Scale: 1:30 471071.24 Easting: Northing: 224333.19 Checked By: MB Rosefield Solar Farm Name: Machine Excavated Pit Flevation: 90.09mAOD Final Depth: 3.00m Approved By: MB Location: Peartree Grain Store, Steeple Claydon 07/11/2024 Logger: AW Grid System: OSGB Start Date: Tracked Excavator Client EDF Orientation: N/A Inclination: 90° Finish Date: 07/11/2024 Samples & Testing Reduced Lev Installation Strata Description Legend Thickness) Depth (m) Test Results MADE GROUND: Soft to firm brown locally mottled yellow slightly gravelly slightly sandy (0.20)silty CLAY with roots and rootlets. Sand is fine. Gravel is angular to subrounded fine to 0.20 89.89 coarse quartz, mudstone and brick. 0.30 - 0.50 2 B Soft to firm yellowish grey heavily mottled yellow orange slightly gravelly silty CLAY with HV 0.40m, (p)=108 kPa (r)=30 kPa roots and rootlets. Gravel is angular to rounded fine to medium mudstone and quartz. <u>→</u> (0.70)HV 0.60m, (p)=110 kPa (r)=80 kPa At 0.60m, Terracotta land drain at 0.60m. Pit moved West by 500mm. <u>×</u> 0.80 3 D HV 0.80m, (p)=124 kPa (r)=30 kPa 0.90 89.19 4 B -----<u>×</u> Firm yellowish orange gravelly sandy silty CLAY with shell fragments. Sand is fine to coarse. 5 D (0.20)1.00 Gravel is angular to rounded fine to coarse chalk and quartz. 1.10 88.99 Stiff blueish grey slightly gravelly slightly sandy CLAY. Sand is medium to coarse. Gravel is angular to subangular fine to medium mudstone, quartz and chalk. 1.30 - 1.50 6 B From 1.50m, Only quartz gravels. 7 D 1.80 (1.90)2.40 - 2.60 8 B <u>----</u> 2.90 9 D 3.00 87.09 EOH at 3.00m - Scheduled Depth Breaking Out / Hard Strata Stability & Backfill Pit Dimensions 1) At 0.60m, Terracotta land drain at 0.60m. Pit moved West by 500mm. Depth Top (m) Depth Base (m) Duration (hh:mm) Shoring 2) Soakaway test undertaken at 1.50m bgl - instructed to stop after 1 hour by client. m Orientation: Backfill: Arisings

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44 (0)1924 229889

225008.33

5.00m

OSGB

90°

Depth (m) 0.00 - 1.20 1.20 - 5.00

	Start Date:	06/11/2024	Checked:	MB			
	End Date:	End Date: 06/11/2024		MB			
Methodology & Plant							

Method Inspection Pit Dynamic Sampling

Start Date:	06/11/2024	Checked:	MB			
End Date:	06/11/2024	Approved:	MB			
Methodology & Plant						

Plant Used Hand Tools Premier 110

Location ID WS013

> **FINAL** Log Type

Header Sheet

1:50 Scale: Sheet 1 of 1

ameter
Diam (mm

EDF

2372536

Rosefield Solar Farm

Project No:

Name:

Location:

Client:

Casing Diameter Depth (m) Diam (mm

	Groundwater Strikes										
Strike (m)	Casing (m)	Sealed (m)	Time (min)	Rose To (m)	Remarks						
,,	,,	,,	,,	,,							

Northing:

Final Depth:

Grid System:

Inclination:

Location Details

471182.83

87.32mAOD

RW

N/A

Easting:

Elevation:

Logger:

Orientation:

Installation / Instrument Details											
Date	Instrument Details	To (m)	Resp. Zone (m)	Diam (mm)							

If Methodology includes Dynamic Sampling refer to Runs table for info. **Hole Not Cased**

No Groundwater Encountered

No Monitoring Point/s Installed

Backfill							
Depth (m)	Legend Code						
0.00 - 5.00	Bentonite						

In-Situ Tests					
PID	0				
Hand Vane*	0				
Standard Penetration Tests	5				

^{*} One count indicates an average reported result of 3 tests carried out at one depth where available.

Sample Summary						
Environmental Samples						
Soil	1	Water	0			
Geote	chnic	cal Samples				
Bulk	7	Large Bulk	0			
Disturbed	6	6 Disturbed (NR)				
Piston	0	Piston (NR)	0			
Undisturbed	0	Undisturbed (NR)	0			
Undisturbed Thin Wall						
Undisturbed Thin Wall (NR)						
Cor	e San	nple	0			

(NR) Indicates sample undertaken but with
0% Recovery

				Sta	ndard	Penetrati	on T	est Summary	
Test Type	Depth	Casing	Water	Seating		Penetration	N	Reported Result	Hammer Ref
rest type	(m)	(m)	(m)	Blows	Blows	Total (mm)	14	Reported Result	Halliller Ker
Split Spoon	1.20	-	-	2	6	450	6	N=6 (1,1/1,1,2,2)	WLS03
Split Spoon	2.00	-	-	3	7	450	7	N=7 (2,1/2,2,1,2)	WLS03
Split Spoon	3.00	-	-	2	8	450	8	N=8 (1,1/2,1,2,3)	WLS03
Split Spoon	4.00	-	-	2	8	450	8	N=8 (1,1/2,2,2,2)	WLS03
Split Spoon	5.00	-	-	2	12	450	12	N=12 (2,3/2,3,3,4)	WLS03
ł									

SPT Hammer Ref.	Energy Ratio (%)
WLS03	67

Applicable to Cable Percussion Only

Chis	Chiselling			
Depth (m)	Duration (mins)			

Water Added				
Depth (m)	Litres			

Applicable to Rotary Only

Drilling Flush						
Depth (m)	Flush Type	Flush Colour	Return %			

Applicable to Dynamic Sampling Only

	Dynamic Sampling Runs						
ı	Depth (m)	Diam (mm)	Recovery %	Remarks			
	1.20 - 2.00	101	100				
	2.00 - 3.00	86	100				
	3.00 - 4.00	76	100				
	4.00 - 5.00	66	100				
П							
ı							

2372536

Rosefield Solar Farm

Project No:

Name:

Location:

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44(0)1924 229889

225008.33

5.00m

Location Details

Northing:

Final Depth:

471182.83

87.32mAOD

Easting:

Elevation:

Start Date: 06/11/2024 Checked: МВ End Date: 06/11/2024 МВ Approved:

Methodology & Plant

Plant Used

Hand Tools Premier 110

Method 0.00 - 1.20 1.20 - 5.00 Inspection Pit
Dynamic Sampling WS013

FINAL

Location ID

Log Type

Dynamic Sampling

Logged By: RW Grid System: OSGB 1:50 Client EDF Orientation N/A Inclination: 90° Sheet 1 of 1 Depth (m) Samples & Testing educed Lev (mAOD) Water Level (m) Installation , Backfill Strata Description Legend (Stratum Thickness (mm) Depth (m Depth (m) Ref TOPSOIL: Stiff orangish brown sandy gravelly CLAY. Sand is fine to medium. Gravel is (0.30) 0.20 1 ES subangular fine to medium chalk and flint. 0.30 87.02 Orange brown very clayey fine to medium SAND. (0.70) 1.00 1.00 - 1.20 1.20 - 1.60 1.00 86.32 Stiff orangish brown slightly sandy CLAY. Sand is fine to medium. SPT(S) 1.20m, N=6 (1,1/1,1,2,2) 1.70 8 D (1.90) SPT(S) 2.00m, N=7 (2,1/2,2,1,2) 2.80 10 D 2.90 Stiff dark grey slightly gravelly slightly sandy CLAY. Sand is fine to medium. Gravel is 11 B SPT(S) 3.00m, N=8 (1,1/2,1,2,3) 3.00 - 3.50 subangular fine to medium chalk. 3.80 12 D (2.10)4.00 - 4.50 13 B SPT(S) 4.00m, N=8 (1,1/2,2,2,2) 4.80 14 D 5.00 82.32 SPT(S) 5.00m, N=12 (2,3/2,3,3,4) EOH at 5.00m - Scheduled Depth 10 Observations / Remarks Misc Dynamic Sampling Runs Installations 100 100 100 100 100 1.20 2.00 3.00 4.00 Instrument Details Resp. Zone | Depth (m) | Diameter To (m) Diam (mm) Re Groundwater Strikes Strike (m) Casing (m) Sealed (m) Rises To (m) Time (min) Remarks WLS03 (67%)

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44 (0)1924 229889

225008.34

5.00m

OSGB

90°

Start Date:	06/11/2024	Checked:	МВ
End Date:	06/11/2024	Approved:	MB
	Methodolo	ogv & Plant	

Method Dynamic Probing Plant Used Premier 110

Location ID WS013/DP

FINAL Log Type

Header Sheet 1:50 Scale:

Sheet 1 of 1

Hole Diameter				
Depth (m)	Diam (mm)			

EDF

2372536

Rosefield Solar Farm

Project No:

Name:

Location:

Client:

Casing Diameter Depth (m) Diam (mm

	Groundwater Strikes				
Strike (m)	Casing (m)	Sealed (m)	Time (min)	Rose To (m)	Remarks
(111)	(111)	(111)	(111111)	(111)	

Northing:

Final Depth:

Grid System:

Inclination:

Location Details

471182.84

87.32mAOD

RW

N/A

Easting:

Elevation:

Logger:

Orientation:

Installation / Instrument Details						
Date	Instrument Details	To (m)	Resp. Zone (m)	Diam (mm)		

If Methodology includes Dynamic Sampling refer to Runs table for info. **Hole Not Cased**

No Groundwater Encountered

No Monitoring Point/s Installed

Backfill		
Depth (m)	Legend Code	
0.00 - 5.00	Bentonite	

In-Situ Tests	
PID	0
Hand Vane*	0
Standard Penetration Tests	0

^{*} One count indicates an average reported result of 3 tests carried out at

one depth where available.

Sample Summary				
• • • • • • • • • • • • • • • • • • • •				
Enviroi	nmer	ntal Samples		
Soil	0	Water	0	
Geote	chnic	cal Samples		
Bulk	Bulk 0 Large Bulk			
Disturbed	0	Disturbed (NR)	0	
Piston	0	Piston (NR)	0	
Undisturbed	0	Undisturbed (NR)	0	
Undisturbed Thin Wall			0	
Undisturbed Thin Wall (NR)			0	
Core Sample			0	

(NR) Indicates sample undertaken but with 0% Recovery

No Samples Taken

				Sta	ndard	Penetrati	on T	est Summary	
Test Type	Depth (m)	Casing (m)	Water (m)		Main Blows	Penetration Total (mm)	N	Reported Result	Hammer Ref
	(111)	(111)	(111)	biows	biows	iotai (iiiiii)			

SPT Hammer Ref.	Energy Ratio (%)

No Standard Penetration Tests Undertaken

Applicable to Cable Percussion Only

Chis	elling		Water	Added
Depth (m)	Depth (m) Duration (mins)		Depth (m)	Litres

Applicable to Rotary Only										
	Drilling Flush									
Depth (m)	Flush Type	Flush Colour	Return %							

Applicable to Dynamic Sampling Only									
Dynamic Sampling Runs									
Depth (m)	Diam (mm)	Recovery %	Remarks						

2372536

Project No:

Name:

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44(0)1924 229889

225008.34

Location Details

Northing:

471182.84

Easting:

Start Date: 06/11/2024 Checked: МВ End Date: 06/11/2024 МВ Approved:

Method Dynamic Probing

Methodology & Plant

Plant Used Premier 110

WS013/DP

FINAL

Location ID

Log Type **Dynamic Probe**

DPSH-B

Hammer Weight:

64.0kg

Rod Diam:

Fall Height:

750mm

Cone Base Diam:

Rosefield Solar Farm Final Depth: Elevation: 87.32mAOD 5.00m Location: Peartree Grain Store, Steeple Claydon Logged By: RW Grid System: OSGB Client: Sheet 1 of 1 EDF Orientation: N/A Inclination: 90° Depth (m) (Stratum Thickness) Blows / 100mm Reduced Torque (Nm) Strata Description Level (mAOD) Observations / Remarks Equipment Information Dynamic Probe Type:

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44 (0)1924 229889

222523.87

5.00m

OSGB

90°

Depth (m) 0.00 - 1.20 1.20 - 5.00

Start Date:	04/11/2024	Checked:	MB
End Date:	04/11/2024	Approved:	MB
	Methodolo	ogy & Plant	

Method Inspection Pit Dynamic Sampling Location ID
WS015

FINAL

Log Type

Header Sheet

Scale: 1:50

Sheet 1 of 1

Hole Di	ameter
Depth (m)	Diam (mm)

EDF

2372536

Rosefield Solar Farm

Project No:

Name:

Location:

Client:

Casing Diameter
Depth (m) Diam (mm)

	Groundwater Strikes							
Strike (m)	Casing (m)	Sealed (m)	Time (min)	Rose To (m)	Remarks			
(111)	(111)	(111)	(111111)	(111)				

Northing:

Final Depth:

Grid System:

Inclination:

Location Details

472153.33

RW

N/A

126.64mAOD

Easting:

Elevation:

Logger:

Orientation:

Installation / Instrument Details									
Date	Instrument Details	To (m)	Resp. Zone (m)	Diam (mm)					

Plant Used Hand Tools Premier 110

If Methodology includes Dynamic Sampling refer to Runs table for info. **Hole Not Cased**

No Groundwater Encountered

No Monitoring Point/s Installed

Backfill						
Depth (m)	Legend Code					
0.00 - 5.00	Bentonite					

In-Situ Tests	
PID	0
Hand Vane*	3
Standard Penetration Tests	5

one depth where available.

^{*} One count indicates an average reported result of 3 tests carried out at

Sample Summary						
Environmental Samples						
Soil :	1	Water	0			
Geotech	nic	al Samples				
Bulk 6 Large Bulk						
Disturbed	7	Disturbed (NR)	0			
Piston	0	Piston (NR)	0			
Undisturbed	0	Undisturbed (NR)	0			
Undisturbed Thin Wall						
Undisturbed Thin Wall (NR)						
Core S	Sam	ıple	0			

(NR) Indicates sample undertaken but with
0% Recovery

	Standard Penetration Test Summary										
Test Type	Denth Casing Water Seating Main Penetration						Reported Result	Hammer Ref			
Split Spoon	1.20	-		2	10	450	10	N=10 (1,1/2,2,3,3)	WLS03		
Split Spoon	2.00	-	-	5	17	450	17	N=17 (2,3/4,4,5,4)	WLS03		
Split Spoon	3.00	-	-	4	11	450	11	N=11 (2,2/3,2,3,3)	WLS03		
Split Spoon	4.00	-	-	6	11	450	11	N=11 (3,3/3,2,3,3)	WLS03		
Split Spoon	5.00	-	-	7	23	450	23	N=23 (3,4/4,6,7,6)	WLS03		

SPT Hammer Ref.	Energy Ratio (%)
WLS03	67

Applicable to Cable Percussion Only

Chise		
Depth (m)	Duration (mins)	

Water Added							
Litres							

Applicable to Rotary Only

Drilling Flush									
Depth (m)	Flush Type	Flush Colour	Return %						
			1						

Applicable to Dynamic Sampling Only

	Dynamic Sampling Runs										
	Depth (m)	Diam (mm)	Recovery %	Remarks							
	1.20 - 2.00	101	100								
	2.00 - 3.00	86	100								
	3.00 - 4.00	52	100								
	4.00 - 5.00	66	100								
П											

2372536

Rosefield Solar Farm

Project No:

Name:

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44(0)1924 229889

222523.87

Location Details

Northing:

Final Depth: 5.00m

472153.33

126.64mAOD

Easting:

Elevation:

Start Date: 04/11/2024 Checked: МВ End Date: 04/11/2024 МВ Approved:

Methodology & Plant

Method Inspection Pit Dynamic Sampling Depth (m) 0.00 - 1.20 1.20 - 5.00

WS015 Plant Used Hand Tools Premier 110

FINAL

Location ID

Log Type

Dynamic Sampling

Both Discounts (greatly agreed) without any CLAS sand is fine to medium. Soft focuses signify agreedly slightly control without to medium. Soft focus signify to subsequent from to medium finit. Soft focus signify to subsequent from the control of the control						th: 5.00m									
Topics of the state of the stat	ion:	Peartree Grain Store, Steeple Claydon	Logged By:	RW	Grid Syste	em: OSGB								Scale: 1:5	0
Considerable provides a lighting gravelly grownly under CAV. Sand is fine to medium. Soft forcing the brown sandy CLAV Sand is fine to medium. Soft forcing the brown sandy CLAV Sand is fine to medium. Soft light strongth brown sandy CLAV Sand is fine to medium. Soft light strongth brown sandy CLAV Sand is fine to medium. Soft light strongth brown sandy CLAV Sand is fine to medium. Soft light strongth brown sandy CLAV Sand is fine to medium. Soft light strongth brown sandy CLAV Sand is fine to medium. Soft light strongth brown sandy CLAV Sand is fine to medium. Soft light strongth brown sandy CLAV Sand is fine to medium. Soft light strongth brown sandy CLAV Sand is fine to medium. Soft light strongth brown sandy CLAV Sand is fine to medium. Soft light strongth brown sandy CLAV Sand is fine to medium. Soft light strongth brown sandy CLAV Sand is fine to medium. Soft light strongth brown sandy CLAV Sand is fine to medium. Soft light strongth brown sandy fine to medium. Soft light strongth brown sandy fine to medium. Soft light strongth	:	EDF	Orientation:	N/A	Inclinatio	n: 90°								Sheet 1 of 1	
TOPSOLL'S Self around slightly growthly slightly sandy CLAY. Sand is fine to medium. Solid		Strata Description				Legend	(Stratum	Reduced Leve						Samples & Testing	
Growth is angular to subangular from to medium. Self coungin brown sandy CLAY. Sand is fine to medium. Self coungin brown sandy CLAY. Sand is fine to medium. Self coungin brown sandy CLAY. Sand is fine to medium. Self coungin brown sandy CLAY. Sand is fine to medium. Self coungin brown sandy CLAY. Sand is fine to medium. Self coungin brown sandy CLAY. Sand is fine to medium. Self dark grey slightly sandy CLAY. Sand is fine to medium. Self dark grey	TORGO		CLAY C I		10	V///XV///X	Thicknes	i) (MAOD)	Depth (m)	Level (m)	Backiiii			Test Results	
Soft brownish orange very sandy CLAX Sand is fine to medium. Soft brownish orange very sandy CLAX Sand is fine to medium. Connighi brown sily fine to medium SAMD. Soft brownish orange very sandy CLAX Sand is fine to medium. EDH at \$ 5,00m - Scheduled Degth Fig. 12.45 Soft brownish orange very sandy CLAX Sand is fine to medium. Soft brownish orange very sandy CLAX	Gravel i	is angular to subangular fine to medium fli	nt.	і із ппе то теа	lium.							0.30	1 ES	HV 0.30m, (p)=102 kPa (r)=61 kPa	
Self light strength brown slightly gravelly slightly sandy CLW. Sand is fine to redum. 2.30	Stiff ora	rangish brown sandy CLAY. Sand is fine to mo	edium.												
Soft brownish crange very sandy CLAY. Sand is fine to medium. Countries Subsequent Subseq							(0.80)								1 -
200 201 202 203				Sand is fine to			1.20	125.44						SPT(S) 1.20m, N=10 (1,1/2,2,3,3)	
Prom 236m to J.Son, Biccoming slightly motibility grows Prom 256m to J.Son, Biccoming slightly grows Prom 256m												2.00	8 D	HV 1.80m, (p)=181 kPa (r)=104 kPa SPT(S) 2.00m. N=17 (2.3/4.4.5.4)	2 -
From 2.50m to 3.50m, Bozoming alignity meeting grow. Soft brownish orange very sandy CLAY. Sand is fine to medium. Orangish brown sity fine to medium SAND. Soft dark grey slightly sandy CLAY. Sand is fine to meetium. EDH at 6.00m - Scheduled Depth EDH at 6.00m - Scheduled Depth Decreators / Remarks Misc. Backtill Dynamic Sampling Runs							(2.30)						9 B	- 1 (4) - 1 - 1 (-) (-) (-) (-)	2
Soft brownish orange very sandy CLAY. Sand is fine to medium. 1,00 - 1,30 11 12,20,13,14 1,00 - 1,30 1,00 1	Fron	om 2.50m to 3.50m, Becoming slightly mottled grey.					(=:==)					2.70	10 D	HV 2.50m, (p)=209 kPa (r)=131 kPa	
Soft brownish orange very sandy CLAY. Sand is fine to medium. 1,50 100 122,64 400-430 112 279(31400n, h-11133(2,2,2) 123,64 400-430 112 279(31400n, h-11133(2,2,2) 112 279(3														SPT(S) 3.00m, N=11 (2,2/3,2,3,3)	3 -
Commission Com	Soft hro	rownish orange year sandy CLAV Sand is fine	a to medium				3.50	123.14							
Stiff dark grey slightly sandy CLAY. Sand is fine to medium. EOH at 5.00m - Scheduled Depth EOH at 5.00m - Scheduled Depth Department of the second of th	SOIL DIC	Ownish Grange very Sahuy CLAT. Sahu is line	to medium				(0.50)					3.60	12 D		
Stiff dark grey slightly sandy CLAX. Sand is fine to medium.	Orangis	ish brown silty fine to medium SAND.				× × × ×		122.64				4.00 - 4.50	13 D	SPT(S) 4.00m, N=11 (3,3/3,2,3,3)	4 -
Settl dark grey slightly sandy CLAV. Sand is fine to medium. EOH at 5,00m - Scheduled Depth EOH at 5,00m - Scheduled Depth Misc. Backfill						x									
Bervations / Remarks Misc. Backfill Dynamic Sampling Runs Instrument Details Resp. Zone Depth (m) Material From (m) 0 c (m)	Stiff daı	ark grey slightly sandy CLAY. Sand is fine to n	nedium.									4.90	14 D		5 -
Misc. Backfill Dynamic Sampling Runs Installations															6 ⁻
Misc. Backfill Dynamic Sampling Runs Installations															7.
Depth (m) Material From (m) To (m) Data (mm) Recovery (%) Remarks Instrument Details Resp. Zone Depth (m) Depth (m) To (m) Data (mm) Recovery (%) Remarks Instrument Details Resp. Zone Depth (m) To (m) Data (mm) Recovery (%) Remarks Instrument Details Resp. Zone Depth (m)															,
Deservations / Remarks Misc. Backfill Dynamic Sampling Runs Installations															8 -
Depth (m) Material From (m) To (m) Diam (mm) Recovery (%) Remarks Instrument Details Resp. Zone Depth (m)															
Misc. Backfill Dynamic Sampling Runs Installations															9
Misc. Backfill Dynamic Sampling Runs Installations															10
Depth (m) Material From (m) To (m) Diam (mm) Recovery (%) Remarks Instrument Details Resp. Zone Depth (m)	a sott -	/ Damarks			LÆII		Б.	mio C "	Bun-					allations	
98 4 10 0.00 - 5.00 Bentonite 1.20 2.00 101 100 2.00 101 100 2.00 3.00 86 100 3.00 8.00 100 100 2.00 3.00 8.00 100 100 2.00 3.00 8.00 100 100 2.00 3.00 8.00 100 100 2.00 3.00 8.00 100 100 2.00 100 100 2.00 100 100 100 100 100 100 100 100 100	vations /	s / Kemarks		Depth (m)		From (m) 1				emarks	Inst	rument Detai		allations Resp. Zone Depth (m) D	iamete
Groundwater Strikes				0.00 - 5.00		1.20 2.00 3.00	2.00 3.00 4.00	101 10 86 10 52 10	0 0 0						
			water Ei Not Ca	ng Poin						į					
Strike (m) Casing (m) Sealed (m) Rises To (m) Time (min) Rer			Pur Hol	itor							Strike (m) Ca	sing (m) Seale	ed (m) Ris	es To (m) Time (min) Remar	ks

WLS03 (67%)

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44 (0)1924 229889

222523.97

5.00m

OSGB

Start Date:	04/11/2024	Checked:	МВ				
End Date:	04/11/2024	Approved:	MB				
Methodology & Plant							

Plant Used Premier 110 Method

Location ID WS015/DP

FINAL

Log Type

Header Sheet

1:50 Scale: Sheet 1 of 1

Hole Diameter								
Depth (m)	Diam (mm)							

EDF

2372536

Rosefield Solar Farm

Project No:

Name:

Location:

Client:

Casing Diameter Depth (m) Diam (mm

	Groundwater Strikes									
Strike (m)	Casing (m)	Sealed (m)	Time (min)	Rose To (m)	Remarks					
,,	,,	,,	,,	,,						

Northing:

Final Depth:

Grid System:

Inclination:

Location Details

472152.89

RW

126.68mAOD

Easting:

Elevation:

Logger:

Orientation

Installation / Instrument Details										
Date	Instrument Details	To (m)	Resp. Zone (m)	Diam (mm)						

If Methodology includes Dynamic Sampling refer to Runs table for info. **Hole Not Cased**

No Groundwater Encountered

No Monitoring Point/s Installed

Backfill					
Depth (m)	Legend Code				
0.00 - 5.00	Bentonite				

In-Situ Tests	
PID	0
Hand Vane*	0
Standard Penetration Tests	0

^{*} One count indicates an average reported result of 3 tests carried out at one depth where available.

Sample Summary						
Environmental Samples						
Soil	0	Water	0			
Geotechnical Samples						
Bulk	0	Large Bulk	0			
Disturbed	0	Disturbed (NR)	0			
Piston	0	Piston (NR)	0			
Undisturbed	0	Undisturbed (NR)	0			
Undisturbed Thin Wall 0						
Undisturbed Thin Wall (NR)						
Core	Sam	ıple	0			

(NR) Indicates sample undertaken but with 0% Recovery

No Samples Taken

				Sta	ndard	Penetrati	on T	est Summary	
Test Type	Depth (m)	Casing (m)	Water (m)		Main Blows	Penetration Total (mm)	N	Reported Result	Hammer Ref
	(111)	(111)	(111)	biows	biows	iotai (iiiiii)			

SPT Hammer Ref.	Energy Ratio (%)

No Standard Penetration Tests Undertaken

Applicable to Cable Percussion Only

Chis	elling	Water Added			
Depth (m)	Duration (mins)	Depth (m)	Litres		

Applicable to Rotary Only							
Drilling Flush							
Depth (m)	Flush Type	Flush Colour	Return %				

Applicab	Applicable to Dynamic Sampling Only						
	Dynamic Sampling Runs						
Depth (m)	Depth (m) Diam (mm) Recovery % Remarks						

2372536

Rosefield Solar Farm

Project No:

Name:

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44(0)1924 229889

222523.97

Location Details

Northing:

Final Depth: 5.00m

472152.89

126.68mAOD

Easting:

Elevation:

Start Date:	04/11/2024	Checked:	МВ
End Date:	04/11/2024	Approved:	MB

Methodology & Plant Method Dynamic Probing Plant Used Premier 110 WS015/DP

Location ID

FINAL

Log Type

Dynamic Probe Type:

Hammer Weight:

64.0kg

Rod Diam:

Fall Height:

750mm

Cone Base Diam:

Dynamic Probe

Secretary Processor Proc	Location:	Peartree Grain Store,	Steeple Clav	Elevation:	126.68MA			.00m						4.50	
### SECURE SCHIEF MANAGE STATE SANGERIGE SANGERIGE			,	Logged By:	RW			SGB				Scale:		1:50	
### 1997 1997	Client:	EDF				Incl	ination:						eet 1 o		
Security of Finances Space Spa		5 10	15		0 3	35 4	0 4	5	Strata Description	Legend	Depth (m) (Stratum	Reduced Level	Samples	Torque (Nm)	
Societation / Remarks Sequence information	1	+ +	1								Inickness)	(MAOD)			
Societation / Remarks Sequence information	1														:
2 Soundation / Annalis September of contains	4														-
To a second desired to the second desired to	2														-
Squarent rioransum	3														1
2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3														ļ. :
2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 2														1 -
Discretions/ Memaria Capteret informations Capteret informations Capteret informations	2														-
2 2 2 3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5															-
2 2 2 3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3														
a Source Information Equipment information	2														
a a grant of the control of the cont	2 3														2 -
Decreasors / Remarks Equipment information	3														-
Sourcert information															:
Sourcert information	3														7
a de la composición del composición de la composición de la composición de la composición del composición de la composición del composición de la composición del composición	2] :
Scarolators / Remarks Equipment Information	3		1												3 -
Scoruzonos / Remarks Equipment Information]													:
Scorvations / Remarks Equipment Information	3	1													:
5	3														-
5 4 5 7 7 7 7 7 8 Parants Supprest Information	2 3														-
5 4 5 7 7 7 7 7 8 Parants Supprest Information	3														١.٠
Separations / Remarks Equipment information	4 3	1													4 -
S 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4														
S 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		5													-
5 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9															:
5	4														:
7	5								-						5 -
7															:
7	_														
7	-														-
7]														
9 Observations / Remarks Equipment Information	6								-						6 -
9 Observations / Remarks Equipment Information															
9 Observations / Remarks Equipment Information	1														
9 Observations / Remarks Equipment Information	_														-
9 Observations / Remarks Equipment Information															;
9 Observations / Remarks Equipment Information	7 -														7 -
9 Observations / Remarks Equipment Information															<u> </u>
9 Observations / Remarks Equipment Information]														-
9 Observations / Remarks Equipment Information	-														-
9 Observations / Remarks Equipment Information	-														:
9 Observations / Remarks Equipment Information	1 -1														
Dbservations / Remarks Equipment Information	8 -								1						8 -
Dbservations / Remarks Equipment Information															:
Dbservations / Remarks Equipment Information															-
Dbservations / Remarks Equipment Information															1:
Dbservations / Remarks Equipment Information															1:
Dbservations / Remarks Equipment Information	9	+							1						9 -
Dbservations / Remarks Equipment Information															-
Dbservations / Remarks Equipment Information	-														:
Dbservations / Remarks Equipment Information															7
Dbservations / Remarks Equipment Information															:
Dbservations / Remarks Equipment Information	10										1				10 -
															Ĺ
Dynamic Broke Type:	Observations	/ Remarks		 											

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44 (0)1924 229889

222730.71

OSGB

90°

Depth (m) 0.00 - 1.20 1.20 - 3.80

Start Date:	04/11/2024	Checked:	МВ		
End Date:	04/11/2024	Approved:	MB		
Methodology & Plant					

Method Inspection Pit Dynamic Sampling WS016

Location ID

FINAL

Log Type

Header Sheet

Scale: 1:50 Sheet 1 of 1

Hole Di	ameter
Depth (m)	Diam (mm)

EDF

2372536

Rosefield Solar Farm

Project No:

Name:

Location:

Client:

Casing Diameter
Depth (m) Diam (mm)

	Groundwater Strikes										
Strike (m)	Casing (m)	Sealed (m)	Time (min)	Rose To (m)	Remarks						
(111)	(111)	(111)	(111111)	(111)							

Northing:

Grid System:

Inclination:

Final Depth: 3.80m

Location Details

427426.70

RW

N/A

130.48mAOD

Easting:

Elevation:

Logger:

Orientation:

Installation / Instrument Details											
Date	Instrument Details	To (m)	Resp. Zone (m)	Diam (mm)							

Plant Used Hand Tools Premier 110

If Methodology includes Dynamic Sampling refer to Runs table for info. **Hole Not Cased**

No Groundwater Encountered

No Monitoring Point/s Installed

Backfill								
Depth (m)	Legend Code							
0.00 - 3.80	Bentonite							

In-Situ Tests	
PID	0
Hand Vane*	3
Standard Penetration Tests	4

* One count indicates an average reported result of 3 tests carried out at one depth where available.

	Hand Vane*	3
Stand	ndard Penetration Tests	4

Sam	ple S	Summary	- 1					Sta	ndard	Penetrati	on T	Test Summary	
Enviro	nmer	ntal Samples		Test Type	Depth (m)	Casing (m)	Water (m)	Seating Blows		Penetration Total (mm)	N	Reported Result	Hammer Re
Soil	1	Water	0	Split Spoon	1.20	-	-	5	18	450	18	N=18 (2,3/4,4,4,6)	WLS03
Geote	chnic	cal Samples		Split Spoon Split Spoon	2.00 3.00	-	-	8 9	16 35	450 450	16 35	N=16 (4,4/3,4,4,5) N=35 (4,5/6,9,8,12)	WLS03 WLS03
Bulk	6	Large Bulk	0	Split Spoon	3.80	-	-	17	50	450	50	N=50 (8,9/12,11,16,11)	WLS03
Disturbed	7	Disturbed (NR)	0										
Piston	0	Piston (NR)	0										
Undisturbed	0	Undisturbed (NR)	0										
Undistu	rbed	Thin Wall	0										
Undisturbe	ed Thi	n Wall (NR)	0										
Core Sample 0													
•	•	e undertaken but v covery	vith										

SPT Hammer Ref.	Energy Ratio (%)
WLS03	67

Applicable to Cable Percussion Only

Chis	elling
Depth (m)	Duration (mins)
	1

	•									
Water Added										
Depth (m)	Litres									

Applicable to Rotary Only

Drilling Flush											
Depth (m)	Flush Type	Flush Colour	Return %								
Deptil (III)	Trush Type	i iusii coloui	Neturi 70								

Applicable to Dynamic Sampling Only

2372536

Rosefield Solar Farm

Project No:

Name:

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44(0)1924 229889

222730.71

Location Details

Northing:

Final Depth: 3.80m

427426.70

130.48mAOD

Easting:

Elevation:

Start Date: 04/11/2024 Checked: МВ End Date: 04/11/2024 МВ Approved:

Methodology & Plant

Method Inspection Pit Dynamic Sampling Depth (m) 0.00 - 1.20 1.20 - 3.80 Plant Used Hand Tools Premier 110 Location ID

WS016

FINAL Log Type

Dynamic Sampling

Locatio	n: Peartree Grain Store, Steeple Claydon	Elevation:	130.48mAOD	Final Dept										
		Logged By:	RW	Grid Syste									Scale: 1:5	00
Client:	EDF	Orientation:	N/A	Inclination	n: 90°		\Box		 				Sheet 1 of 1	
	Strata Description				Legend	Depth ((Stratu	n Reduced I	a (IIIIII)	touch (m)	nstallation / Backfill		ı .	Samples & Testing	
	OPSOIL: Stiff brown sandy CLAY. Sand is fine to me	odium			X//XX//X	Thickne (0.15	55)	Depth (m)		Depth (m)	Ref	Test Results	
- S	tiff orangish brown sandy CLAY. Sand is fine to me	edium.			774777477	0.15	130.3	3			0.10 0.20 - 0.50	1 ES 2 B		7
1 -						(0.35		_			0.40	7 D	HV 0.30m, (p)=163 kPa (r)=81 kPa	- 1
- S	tiff grey sandy CLAY. Sand is fine to medium.					0.50	129.9	³			0.50 - 1.00 0.60	4 B 3 D		7
1 7						(0.50					0.80	8 D		7
1 0	tiff grey gravelly sandy CLAY. Sand is fine to mediu	ım Graval i	c cubangular fin	o to		1.00	129.4	3			1.00 - 1.20	6 B		1 -
	nedium flint.	iii. Giavei i	s subaligulai IIII	ie to							1.10 1.20 - 1.50	5 D 9 B	SPT(S) 1.20m, N=18 (2,3/4,4,4,6)	1
1 -						(0.90								-
1 7						,								7
								_			1.80	10 D	HV 1.80m, (p)=241 kPa (r)=47 kPa	7
	tiff grey slightly gravelly slightly sandy CLAY. Sand	is fine to m	edium. Gravel is	S		1.90	128.5	3			2.00 - 2.50	11 B	SPT(S) 2.00m, N=16 (4,4/3,4,4,5)	2 -
SI	ubangular chalk.													
-														7
-														7
-						(1.90					2.80	12 D	HV 2.80m, (p)=209 kPa (r)=37 kPa	1
3 -											3.00 - 3.50	13 B	SPT(S) 3.00m, N=35 (4,5/6,9,8,12)	3 -
]]
]														1
]											3.70	14 D		7
]	EOH at 3.80m - Ref	usal			-	3.80	126.6	В			3.70	140	SPT(S) 3.80m, N=50 (8,9/12,11,16,11)	3
4 -	25 4. 5.55111 1101												(0,0/12,11,10,11)	4 -
1														}
}]
1														1
5 –														5 –
1 -														
-														1
1														}
6 -														6 -
}														}
-														
1														}
7 -														7 -
-														1
_														
														}
]
8 –														8 –
														_
														-
														-
9 —														9 –
]
														_
														_
														_
10									-					10 -
Observ	ations / Remarks	Mis	sc. Backfi	ill		Dyps	mic Sampli	ng Runs	++			Inst	:allations	
0 23C1 V	,	IVII	Depth (m)	Material		Го (m) [iam (mm) Rec	overy (%)	Remarks	Insti	rument Detai		Resp. Zone Depth (m) D	iameter
		ntered		Bentonite	1.20 2.00	2.00 3.00	101 86	100 100						
		Encour	int/s Ir		3.00	4.00	76	80	Refused					
		water !	toring Point/s										water Strikes	
		roundw Hole	Ē						St	rike (m) Ca	sing (m) Seale	ed (m) Ris	es To (m) Time (min) Remar	ks
		No Gr	Hammer Ref & Ene											
			WL503 (6	,, /0]										

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44 (0)1924 229889

222731.29

5.00m

OSGB

Start Date:	04/11/2024	Checked:	MB
End Date:	04/11/2024	Approved:	MB

Method

Location ID
WS016/DP

FINAL

Log Type

Header Sheet

Scale: 1:50 Sheet 1 of 1

Hole Di	ameter
Depth (m)	Diam (mm

EDF

2372536

Rosefield Solar Farm

Project No:

Name:

Location:

Client:

Casing Diameter
Depth (m) Diam (mm)

	Groundwater Strikes						
Strike (m)	Casing (m)	Sealed (m)	Time (min)	Rose To (m)	Remarks		
(111)	(111)	(111)	(111111)	(111)			

Northing:

Final Depth:

Grid System:

Inclination:

Location Details

472427.31

RW

130.46mAOD

Easting:

Elevation:

Logger:

Orientation

Installation / Instrument Details								
Date	Instrument Details	To (m)	Resp. Zone (m)	Diam (mm)				

Plant Used Premier 110

If Methodology includes Dynamic Sampling refer to Runs table for info. **Hole Not Cased**

No Groundwater Encountered

No Monitoring Point/s Installed

Backfill						
Depth (m)	Legend Code					
0.00 - 5.00	Bentonite					

In-Situ Tests	
PID	0
Hand Vane*	0
Standard Penetration Tests	0

^{*} One count indicates an average reported result of 3 tests carried out at one depth where available.

Camarla Camarana						
Sam	Sample Summary					
Enviror	nmer	ntal Samples				
Soil	Soil 0 Water					
Geotechnical Samples						
Bulk 0 Large Bulk						
Disturbed	0	Disturbed (NR)	0			
Piston	0	Piston (NR)	0			
Undisturbed	0	Undisturbed (NR)	0			
Undisturbed Thin Wall						
Undisturbed Thin Wall (NR)						
Cor	e San	nple	0			

(NR) Indicates sample undertaken but with 0% Recovery

No Samples Taken

				Sta	ndard	Penetrati	on T	est Summary	
Test Type	Depth (m)	Casing (m)	Water (m)		Main Blows	Penetration Total (mm)	N	Reported Result	Hammer Ref
	(,	(,	(,	Diows.	Diows	Total (IIIII)			

SPT Hammer Ref.	Energy Ratio (%)

No Standard Penetration Tests Undertaken

Applicable to Cable Percussion Only

elling		Water	Added
Depth (m) Duration (mins)		Depth (m)	Litres
	elling Duration (mins)		

Applicable to Rotary Only							
	Drilling	Flush					
Depth (m)	Flush Type	Flush Colour	Return %				

App	licab	le to Dy	namic S	ampling Only	
		Dynamic	Sampling	Runs	
Depth	(m)	Diam (mm)	Recovery %	Remarks	
		l			

2372536

Rosefield Solar Farm

Project No:

Name:

Location:

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44(0)1924 229889

222731.29

5.00m

OSGB

Location Details

Northing:

Final Depth:

Grid System:

472427.31

RW

130.46mAOD

Easting:

Elevation:

Logged By:

Start Date: 04/11/2024 Checked: МВ End Date: 04/11/2024 МВ Approved:

Plant Used Premier 110

Methodology & Plant

Method Dynamic Probing

WS016/DP

Location ID

FINAL

Log Type

Dynamic Probe

Dynamic Probe Type: DPSH-B

Hammer Weight:

64.0kg

Rod Diam:

Fall Height:

750mm

Cone Base Diam:

Client: Sheet 1 of 1 EDF Orientation: Inclination: Depth (m) (Stratum Thickness) Blows / 100mm Reduced Torque (Nm) Strata Description Level (mAOD) Observations / Remarks Equipment Information

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44 (0)1924 229889

222634.25

5.45m

OSGB

90°

Depth (m) 0.00 - 1.20 1.20 - 5.45

Sta	Start Date:	05/11/2024	Checked:	МВ	
	End Date: 05/11/2024		Approved:	MB	
Methodology & Plant					

Method Inspection Pit Dynamic Sampling Plant Used
Hand Tools
Premier 110

WS017

Location ID

FINAL Log Type

Header Sheet

Scale: 1:50 Sheet 1 of 1

EDF

2372536

Rosefield Solar Farm

Project No:

Name:

Location:

Client:

Casing Diameter
Depth (m) Diam (mm)

	Groundwater Strikes							
	Strike Casing Sealed Time Rose To Remarks							
(m)	(m)	(m)	(min)	(m)				

Northing:

Final Depth:

Grid System:

Inclination:

Location Details

472685.04

RW

N/A

131.83mAOD

Easting:

Elevation:

Logger:

Orientation:

	Installation / Instrument Details									
Date	Instrument Details	To (m)	Resp. Zone (m)	Diam (mm)						

If Methodology includes Dynamic Sampling refer to Runs table for info. **Hole Not Cased**

No Groundwater Encountered

No Monitoring Point/s Installed

Backfill					
Depth (m)	Legend Code				
0.00 - 5.45	Bentonite				

In-Situ Tests	
PID	0
Hand Vane*	0
Standard Penetration Tests	5

^{*} One count indicates an average reported result of 3 tests carried out at

one depth where available.

Sample Summary					
Environmental Samples					
Soil 1	Water	0			
Geotechn	ical Samples				
Bulk 6	Large Bulk	0			
Disturbed 7	Disturbed (NR)	0			
Piston 0	Piston (NR)	0			
Undisturbed 0	Undisturbed (NR)	0			
Undisturbed Thin Wall					
Undisturbed Thin Wall (NR)					
Core Sa	ample	0			

(NR) Indicates sample undertaken but with
0% Recovery

	Standard Penetration Test Summary								
Test Type	Depth	Casing	Water	Seating	Main	Penetration	N	Reported Result	Hammer Ref
iest Type	(m)	(m)	(m)	Blows	Blows	Total (mm)	IV	Reported Result	nammer ker
Split Spoon	1.20	-	-	4	10	450	10	N=10 (2,2/2,2,3,3)	WLS03
Split Spoon	2.00	-	-	2	16	450	16	N=16 (1,1/3,3,4,6)	WLS03
Split Spoon	3.00	-	-	5	23	450	23	N=23 (2,3/4,5,6,8)	WLS03
Split Spoon	4.00	-	-	9	36	450	36	N=36 (4,5/7,8,9,12)	WLS03
Split Spoon	5.00	-	-	9	30	450	30	N=30 (4,5/5,6,10,9)	WLS03

SPT Hammer Ref.	Energy Ratio (%)
WLS03	67

Applicable to Cable Percussion Only

Chise	elling	١
Depth (m)	Duration (mins)	Dept

Water Added							
:h (m)	h (m) Litres						

Applicable to Rotary Only

Drilling Flush									
Depth (m)	Flush Type	Flush Colour	Return %						

Applicable to Dynamic Sampling Only

	Dynamic Sampling Runs									
Г	Depth (m)	Diam (mm)	Recovery %	Remarks						
	1.20 - 2.00	101	100							
	2.00 - 3.00	86	100							
	3.00 - 4.00	76	100							
	4.00 - 5.00	66	100							

2372536

Rosefield Solar Farm

Project No:

Name:

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44(0)1924 229889

222634.25

Location Details

Northing:

472685.04

Easting:

Elevation:

 Start Date:
 05/11/2024
 Checked:
 MB

 End Date:
 05/11/2024
 Approved:
 MB

Methodology & Plant

Plant Used Hand Tools Premier 110 Location ID

WS017

FINAL

Log Type

Dynamic Sampling

anne.	Noschela solai Tariii	Elevation:	131.83mAOD	Final Dep	:h: 5.45m								Dynamic San	ibiiiig
cation:	Peartree Grain Store, Steeple Claydon	Logged By:	RW	Grid Syste	m: OSGB								Scale:	1:50
ient:	EDF	Orientation:	N/A	Inclinatio	n: 90°								Sheet 1 of 1	
	Strata De:	scription			Legend	Depth (m (Stratum	Reduced Li	Casing Ø (mm)	Water	Installation /			Samples & Testing	
-					~///XV///A	Thicknes	(mAOD)	Depth (m)	Level (m)	Backfill	Depth (m)	Ref 2 B	Test Results	
	SOIL: Stiff brown sandy slightly gravelly angular fine to medium chalk and flint.		to medium. Gr	avel is		(0.30)					0.00 - 0.30 0.20	2 B 1 ES		
Brow	vn slightly gravelly very clayey fine to n	nedium SAND. Gra	avel is subangula	r fine	×//A\///A	0.30	131.53	·			0.40 - 0.70	3 B		
] to m	nedium chalk and flint.					(0.50)					0.50	5 D		
Yello	owish greyish brown gravelly clayey fine	e to medium SANF). Gravel is suba	ngular		0.80	131.03				0.90 - 1.20	4 B		
	ounded fine to medium flint and chalk.			0	<u> </u>	(0.50)					1.00	6 D		1
1						1.30	130.53				1.30 - 1.80	7 B	SPT(S) 1.20m, N=10 (2,2/2,2,3,	3)
	orange and grey slightly gravelly sandy angular fine to medium chalk and flint.		to medium. Gr	avel is								-		
1 3000														
1											1.90	8 D	COTTO 2 CO	c) -
											2.00 - 2.50	9 B	SPT(S) 2.00m, N=16 (1,1/3,3,4,	6) 2
_														
1														
-						(2.90)					2.80	10 D		
1											3.00 - 3.50	11 B	SPT(S) 3.00m, N=23 (2,3/4,5,6,	8) 3
1														
3														
1														
1											3.80	12 D		
													SPT(S) 4.00m, N=36 (4,5/7,8,9,	12) 4
Stiff	grey CLAY.					4.20	127.63	·						
1					LI						4.50	13 D		
]					[-]-]						4.00			
]					<u> </u>	(1.25)					4.80	14 D	SPT(S) 5.00m, N=30 (4,5/5,6,10	19) -
													or 1(3) 3.00111, N=30 (4,5/5,6,10	0,9) 5
1					<u> </u>	_								
-	EOH at 5.45m - S	Scheduled Depth				5.45	126.38	·						
1														
1														6
1														,
1														
]														
1														
														7
1														
														-
														8
														9
1														
														10
ervatio	ons / Remarks	M	1isc. Back	fill		Dyna	nic Samplir	I ng Runs	+ +			I	stallations	
74110	,	IV	Depth (m)	Material		To (m) D	am (mm) Reco	very (%)	Remarks	Inst	trument Deta		Resp. Zone Depth (m)	Diamet
		untered	0.00 - 5.45	Bentonite	2.00	2.00 3.00 4.00	86	100 100 100						
		r Enco	oint/s			5.00		100	-			Green !	dwater Strikes	
		idwate	oring P						5	trike (m) C			dwater Strikes ises To (m) Time (min) Re	marks
		Groun	Hammer Ref & Er	nergy Ratio (%)						,	5,,	. /		
		No	WLS03											

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44 (0)1924 229889

222635.09

5.00m

OSGB

90°

Start Date:	05/11/2024	Checked:	МВ					
End Date:	05/11/2024	Approved:	MB					
Methodology & Plant								

Method

WS017/DP

Location ID

FINAL

Log Type

Header Sheet

1:50 Scale: Sheet 1 of 1

Hole Di	ameter
Depth (m)	Diam (mm)

EDF

2372536

Rosefield Solar Farm

Project No:

Name:

Location:

Client:

Casing Diameter Depth (m) Diam (mm

	Groundwater Strikes										
Strike	Casing	Sealed	Time	Rose To	Remarks						
(m)	(m)	(m)	(min)	(m)	Remarks						

Northing:

Final Depth:

Grid System:

Inclination:

Location Details

472684.88

RW

N/A

131.83mAOD

Easting:

Elevation:

Logger:

Orientation:

Installation / Instrument Details										
Date	Instrument Details	To (m)	Resp. Zone (m)	Diam (mm)						

Plant Used Premier 110

If Methodology includes Dynamic Sampling refer to Runs table for info.

Hole Not Cased

No Groundwater Encountered

No Monitoring Point/s Installed

Backfill							
Depth (m)	Legend Code						
0.00 - 5.00	Bentonite						

In-Situ Tests					
PID	0				
Hand Vane*	0				
Standard Penetration Tests	0				

* One count indicates an average
reported result of 3 tests carried out at
one depth where available.

C							
Sample Summary							
Enviror	nmer	ntal Samples					
Soil	Soil 0 Water						
Geote	chnic	cal Samples					
Bulk	0	Large Bulk	0				
Disturbed	0	Disturbed (NR)	0				
Piston	0	Piston (NR)	0				
Undisturbed	0	Undisturbed (NR)	0				
Undisturbed Thin Wall							
Undisturbed Thin Wall (NR)							
Cor	e San	nple	0				

(NR) Indicates sample undertaken but with 0% Recovery

No Samples Taken

				Sta	ndard	Penetrati	on T	est Summary	
Test Type	Depth (m)	Casing (m)	Water (m)		Main Blows	Penetration Total (mm)	N	Reported Result	Hammer Ref
	(111)	(111)	(111)	biows	biows	iotai (iiiiii)			

SPT Hammer Ref.	Energy Ratio (%)			

No Standard Penetration Tests Undertaken

Applicable to Cable Percussion Only

elling		Water Added				
Duration (mins)		Depth (m)	Litres			
	Duration (mins)					

Drilling Flush									
Depth (m)	Flush Type	Flush Colour	Return %						
	I	I	1						

Applicable to Rotary Only

Applicable to Dynamic Sampling Only												
	Dynamic Sampling Runs											
Depth (m)	Diam (mm)	Recovery %	Remarks									

2372536

Rosefield Solar Farm

Project No:

Name:

Location:

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44(0)1924 229889

222635.09

Location Details

Northing:

Final Depth: 5.00m

Grid System: OSGB

472684.88

RW

131.83mAOD

Easting:

Elevation:

Logged By:

Start Date:	05/11/2024	Checked:	MB
End Date:	05/11/2024	Approved:	MB

Methodology & Plant Method Dynamic Probing Plant Used Premier 110 **WS017/DP**

Location ID

FINAL

Log Type

DPSH-B

Hammer Weight:

64.0kg

Rod Diam:

Fall Height:

750mm

Cone Base Diam:

Dynamic Probe

-11				,		Logged By:	RW		a System: (Scale:		1:50	
Clien	nt:	EDF				Orientation:	N/A	Incl	lination:	90°			1			eet 1 o	f 1	_
		5 1	10 1	15 2		100mm 5 3	0 3	5 4	0	45		Strata Description	Legend	Depth (m) (Stratum Thickness)	Reduced Level (mAOD)	Samples	Torque (Nm)	
		<u> </u>	Ĭ		Ĭ				Ĭ	Ϊ				Thickness)	(mAOD)		(IVIII)	▙
	1 1 2 3																	
	3																	
+	2																	
+	1																	
7	2																	
1	2										1							1 -
1	2 2 2 2 2																	
- ‡																		
+	2																	
1	2																	
2	2										1							2 -
Ŧ	1 2																	
7	3																	
‡	3																	
‡	3 3 3																	
3	3										1							3 -
	3																	
‡	3																	
	4																	-
1	4																	
4	4																	4 -
- 1	4																	"
H	4	5																
1	4																	-
1	4																	
	4																	
5	5	5									1							5 -
1																		
-																		
6											1							6 -
_																		١.
-																		
]																		
7 -											1							7 -
-																		
7																		'
8											-							8 -
																		-
9 -]							9 -
"																		ا
-																		
-																		-
-																		
10																		10 -
Obse	ervations /	Remarks												Ec	uipment	Informa	ation	_
															Dynamic F	robe Typ	e:	_
1														1	DD	SH-В		

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44 (0)1924 229889

222434.16

OSGB

90°

Depth (m) 0.00 - 1.20 1.20 - 4.00

Start Date:	05/11/2024	Checked:	MB				
End Date:	05/11/2024	Approved:	MB				
Methodology & Plant							

Method

Inspection Pit
Dynamic Sampling

ws018

Plant Used

Hand Tools Premier 110

Location ID

FINAL Log Type

Header Sheet

Scale: 1:50 Sheet 1 of 1

lient:	. E	DF
	Hole Di	ameter
	Depth (m)	Diam (mm)
		l

2372536

Rosefield Solar Farm

Project No:

Name:

Location:

Casing Diameter
Depth (m) Diam (mm)

	Groundwater Strikes									
Strike (m)	Casing (m)	Sealed (m)	Time (min)	Rose To (m)	Remarks					
(111)	(111)	(111)	(111111)	(111)						

Northing:

Grid System:

Inclination:

Final Depth: 4.00m

Location Details

472769.34

RW

N/A

134.44mAOD

Easting:

Elevation:

Logger:

Orientation:

Environmental Samples

1 Water

Geotechnical Samples

5

0

0

Undisturbed Thin Wall

Undisturbed Thin Wall (NR)

Core Sample

Large Bulk

Disturbed (NR)

Piston (NR)

Undisturbed (NR)

0

0

0

Installation / Instrument Details										
Date	Instrument Details	To (m)	Resp. Zone (m)	Diam (mm)						

If Methodology includes Dynamic Sampling refer to Runs table for info. **Hole Not Cased**

No Groundwater Encountered

No Monitoring Point/s Installed

Backfill						
Depth (m)	Legend Code					
0.00 - 4.00	Bentonite					

In-Situ Tests				
PID	0			
Hand Vane*	0			
Standard Penetration Tests	4			

* One count indicates an average reported result of 3 tests carried out at one depth where available.

PID	0	(NR) Indicates sample undertaken but wi
and Vane*	0	0% Recovery

Disturbed

Piston

Undisturbed

				Sta	ndard	Penetration	on T	est Summary		
Test Type	Depth	Casing	Water	Seating	Main	Penetration	N	Reported Result	Hammer Ref	
	(m)	(m)	(m)	Blows		Total (mm)		•		
Split Spoon		-	-	2	13	450	13	N=13 (1,1/2,4,3,4)	WLS03	
Split Spoon		-	-	5	22	450	22	N=22 (2,3/4,5,7,6)	WLS03	
Split Spoon	3.00	-	-	8	21	450	21	N=21 (4,4/4,6,6,5)	WLS03	
Split Spoon	4.00	-	-	14	50	450	50	N=50 (6,8/12,13,16,9)	WLS03	
ł			1							
i			1							
i			1							
i			1							
i			1							
i			1							
i			1							
i			1							
i			1							
i			1							
i			1							
i			1							
i			1							
			1							
			1							
			1							
			1							

SPT Hammer Ref.	Energy Ratio (%)
WLS03	67

Applicable to Cable Percussion Only

Chiselling					
Depth (m)	Duration (mins)				

Added
Litres

Applicable to Rotary Only

Drilling Flush						
Depth (m)	Flush Type	Flush Colour	Return %			
			1			

Applicable to Dynamic Sampling Only

	Dynamic Sampling Runs							
Г	Depth (m)	Diam (mm)	Recovery %	Remarks				
	1.20 - 2.00	101	100					
	2.00 - 3.00	86	100					
	3.00 - 4.00	76	100					

2372536

Rosefield Solar Farm

Project No:

Name:

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44(0)1924 229889

222434.16

Location Details

Northing:

Final Depth: 4.00m

472769.34

134.44mAOD

Easting:

Elevation:

Start Date: 05/11/2024 Checked: МВ End Date: 05/11/2024 МВ Approved:

Methodology & Plant

Method Inspection Pit Dynamic Sampling Depth (m) 0.00 - 1.20 1.20 - 4.00

Plant Used Hand Tools Premier 110

Location ID

WS018

FINAL

Log Type

Dynamic Sampling

lees#-	Deputyon Cynin Sterry Sterry St.	Elevation:	134.44mAOD	Final Dep										
Location:	Peartree Grain Store, Steeple Claydon	Logged By:	RW	Grid Syst	em: OSGB								Scale:	1:50
Client:	EDF	Orientation:	N/A	Inclinatio	n: 90°								Sheet 1 of 1	
						Depth (m	Reduced Level	Casing Ø	Water	nstallation /			Samples & Testing	
	Strata Description				Legend	(Stratum Thickness	(m (OD)	(mm) Depth (m)	Level (m)	Backfill	Depth (m)	Ref	Test Results	
- TOPS	OIL: Firm brown gravelly sandy CLAY. Sand is	fine to medi	um. Gravel is a	angular	XXXXX						0.00 - 0.30	2 B		
to su	brounded chalk and flint.					(0.30)	424.44				0.20	1 ES		-
- Stiff	yellowish greyish brown sandy slightly gravell	y CLAY. Sand	l is fine to med	lium.		0.30	134.14				0.40 - 0.80	3 B		-
Grave	el is subangular to subrounded chalk and flint										0.50	4 D		_
-						(0.90)								-
1						,								
1 -											1.00	5 D		1 -
C+iff /	dark grey gravelly slightly sandy CLAY. Sand is	fina to modi	ium Graval is			1.20	133.24				1.20 - 1.80	6 B	SPT(S) 1.20m, N=13 (1,1/2,4,3,4	, -
Suhai	ngular fine to medium chalk and flint.	ille to illeui	iuiii. Graveris			ł								-
	ngalar line to mealarn chaix and line.					j								-
-						-								
1											1.90	7 D		
2 -											2.00 - 2.50	8 B	SPT(S) 2.00m, N=22 (2,3/4,5,7,6)	2 -
-														
7						1								
1						(2.80)								-
1						`,					2.80	9 D		
4					받폭투									
3 —											3.00 - 3.50	10 B	SPT(S) 3.00m, N=21 (4,4/4,6,6,5)	3 -
_						1								
4						-								
1														-
-											3.80	11 D		
-						1					3.80	110		
4	EOH at 4.00m - Ref	usal				4.00	130.44						SPT(S) 4.00m, N=50 (6,8/12,13,1	6,9) 4 -
-														
7														-
1														
-														
5 –														5 -
														-
7														-
1														-
-														-
1														-
6														6 -
4														-
1														
-														-
4														
1														
7														7 -
-														
1														
-														-
-														
1														
8 –														8 -
-														
1														
1														-
+														
1														
9 -														9 -
-														
1														
1														-
+														
1														
10														10 -
Ohar ::	/ Damanda			-en	+		-1-6. "	L	+			Ь.		
Observation	ns / Remarks	Mis			From /r-1		mic Sampling		marke	1	numont D-1		tallations	Diamata
		pau	Depth (m) 0.00 - 4.00	Material Bentonite	1.20	2.00	am (mm) Recove 101 10)	emarks	Insti	rument Detai	115	Resp. Zone Depth (m)	Diameter
		yuntei 1	s In stc		2.00 3.00	3.00 4.00	86 10 76 10	0						
		r Encc Case c	oint/:						- ⊢					
		undwater Encountered Hole Not Cased	ing P.						L				lwater Strikes	
]				St	rike (m) Ca	sing (m) Seale	ed (m) Ris	ses To (m) Time (min) Ren	narks
		Vo Gr	Hammer Ref & En		1									
			WLS03 ((67%)										

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44 (0)1924 229889

222434.54

5.00m

OSGB

90°

Start Date:	05/11/2024	Checked:	MB				
End Date:	05/11/2024	Approved:	MB				
Methodology & Plant							

Method

WS018/DP

Location ID

FINAL

Log Type

Header Sheet

Scale: 1:50

Sheet 1 of 1

Hole Di	ameter
Depth (m)	Diam (mm)

EDF

2372536

Rosefield Solar Farm

Project No:

Name:

Location:

Client:

Casing Diameter
Depth (m) Diam (mm)

	Groundwater Strikes							
Strike (m)	Casing (m)	Sealed (m)	Time (min)	Rose To (m)	Remarks			

Northing:

Final Depth:

Grid System:

Inclination:

Location Details

472768.47

RW

N/A

134.50mAOD

Easting:

Elevation:

Logger:

Orientation:

Installation / Instrument Details									
Date	Instrument Details	To (m)	Resp. Zone (m)	Diam (mm)					

Plant Used Premier 110

If Methodology includes Dynamic Sampling refer to Runs table for info. **Hole Not Cased**

No Groundwater Encountered

No Monitoring Point/s Installed

Backfill							
Depth (m)	Legend Code						
0.00 - 5.00	Bentonite						

In-Situ Tests					
PID	0				
Hand Vane*	0				
Standard Penetration Tests	0				

^{*} One count indicates an average reported result of 3 tests carried out at one depth where available.

			_					
Sample Summary								
Environmental Samples								
Soil 0 Water								
Geotechnical Samples								
Bulk	0	Large Bulk	0					
Disturbed	0	Disturbed (NR)	0					
Piston	0	Piston (NR)	0					
Undisturbed	0	Undisturbed (NR)	0					
Undistu	rbed 1	Thin Wall	0					
Undisturbe	ed Thi	n Wall (NR)	0					
Cor	e San	nple	0					

(NR) Indicates sample undertaken but with 0% Recovery

No Samples Taken

				Sta	ndard	Penetrati	on T	est Summary	
Test Type	Depth (m)	Casing (m)	Water (m)		Main Blows	Penetration Total (mm)	N	Reported Result	Hammer Ref
	(111)	(111)	(111)	biows	biows	iotai (iiiiii)			

SPT Hammer Ref.	Energy Ratio (%)

No Standard Penetration Tests Undertaken

Applicable to Cable Percussion Only

Chise	elling	Water	Added
Depth (m)	Duration (mins)	Depth (m)	Litres

Drilling Flush									
Depth (m)	Flush Type	Flush Colour	Return %						
()									
i	1	l							

Applicable to Rotary Only

	Applicable to Dynamic Sampling Only									
	Dynamic Sampling Runs									
١	Depth (m)	Diam (mm)	Recovery %	Remarks						
ıl										

2372536

Rosefield Solar Farm

Project No:

Name:

Location:

Alliance House 3A South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ +44(0)1924 229889

222434.54

Location Details

Northing:

Final Depth: 5.00m

Grid System: OSGB

472768.47

RW

134.50mAOD

Easting:

Elevation:

Logged By:

Start Date:	05/11/2024	Checked:	МВ
End Date:	05/11/2024	Approved:	MB

Methodology & Plant Method Dynamic Probing Plant Used Premier 110

Location ID WS018/DP

FINAL

Log Type

Dynamic Probe

Fall Height:

750mm

Cone Base Diam:

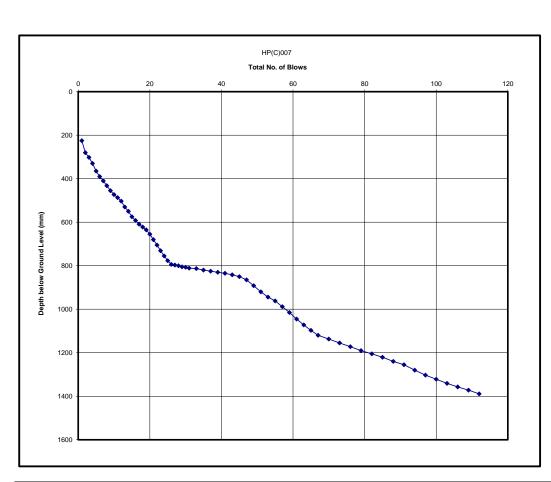
Hammer Weight:

64.0kg

Rod Diam:

1:50 Scale:

Client:	EDF				Orientation:	N/A	Inc	lination: 9	00°				Sh	eet 1 o	f 1	
		10	15		100mm	0 3)r 4	0	15	Strata Description	Legend	Depth (m) (Stratum Thickness)	Reduced Level	Samples	Torque (Nm)	
1	5	10	15 :	20 2	25 3	0 3	35 4	0 4	15 		Ŭ	Thickness)	Level (mAOD)	·	(Nm)	
																-
1																-
																-
1																-
1 1																1 -
2																-
2																-
2 2 2																-
1																-
2 2																2 -
2 2																-
2																-
3																-
3 3																:
3																3 -
3 3																:
3																-
3																-
4																-
4 3																4 -
4																-
4	5															-
	6															-
5	6															5 —
1	6															-
																-
1																-
1																-
6																6 -
-																-
1																-
-																-
																-
7 -										1						7 -
1																-
]																-
]																
8																8 -
																-
																-
																-
																:
9																9 –
																-
																:
]																-
]																
10																10 -
Observations /	Remarks									1		E	l quipment	Inform	ation	
													Dynamic F	robe Typ	oe:	
													ישח	- LI D		


DCP Test Results Sheet / CBR Calculation

Alliance House, South Park Way, Wakefield 41 Business Park, Wakefield, WF2 0XJ Tel: 01924 229889

Email: info@central-alliance.co.uk

Client	EDF					
Ciletti	LDI					
Site Name	Rosefield Solar I	Farm				
Job Number	2372536					
Specification	Van Heerden					
Test Number	HP(C)007					
Test Depth (mm)		0				
Zero Reading (mm)		225				
Date Of Test		04/11/2012				
Easting	Northing	Elevation				

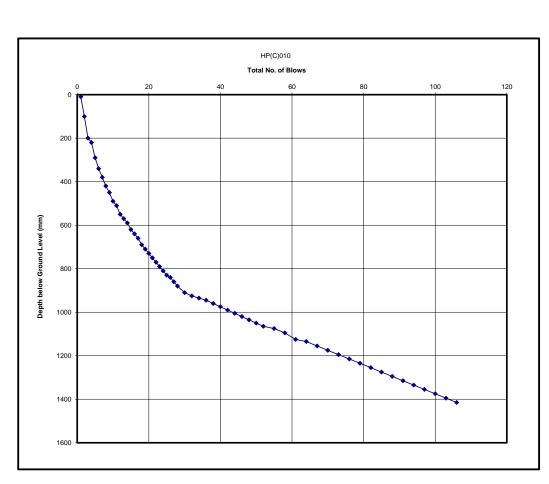
No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration
1	1	0	1	22	25	2	55	18
1	2	55	1	23	26	2	57	26
1	3	22	1	24	24	2	59	27
1	4	28	1	25	22	2	61	30
1	5	35	1	26	17	2	63	27
1	6	25	1	27	3	2	65	25
1	7	20	1	28	3	2	67	23
1	8	22	1	29	5	3	70	17
1	9	23	1	30	2	3	73	18
1	10	18	1	31	4	3	76	17
1	11	14	2	33	2	3	79	18
1	12	16	2	35	7	3	82	15
1	13	27	2	37	5	3	85	16
1	14	20	2	39	5	3	88	19
1	15	25	2	41	5	3	91	15
1	16	17	2	43	7	3	94	25
1	17	17	2	45	8	3	97	23
1	18	13	2	47	15	3	100	19
1	19	13	2	49	27	3	103	19
1	20	20	2	51	28	3	106	16
1	21	25	2	53	24	3	109	15
	·		·			3	112	17

Depth	Range	Average penetration / blow. (mm)	age penetration / blow. (mm) Average CBR value (%)	
225	280	27.50	6.2	
302	503	22.30	8.1	
530	635	18.86	10.0	
655	777	23.67	7.5	
794	850	4.12	70.1	
865	1120	12.27	17.3	
1137	1389	5.98	43.5	

CBR values derived from DCP based on conversion derived by Kleyn and Van Heerden by using the following equation : $Log10 \ (CBR) = 2.632 - 1.28 \ (Log10 \ (mm/blow))$

Recorded by : Checked by : AW MB

FINAL


DCP Test Results Sheet / CBR Calculation

Alliance House, South Park Way, Wakefield 41 Business Park, Wakefield, WF2 0XJ Tel: 01924 229889

Email: info@central-alliance.co.uk

72536	0 10 04/11/2012 Elevation			
72536 n Heerden				
72536 n Heerden	0			
72536 n Heerden	0			
72536 n Heerden				
72536				
	Van Heerden			
oricia solai				
Rosefield Solar Farm				
EDF				

No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration
1	1	0	2	30	30
1	2	90	2	32	15
1	3	100	2	34	10
1	4	20	2	36	10
1	5	70	2	38	15
1	6	50	2	40	15
1	7	40	2	42	15
1	8	40	2	44	15
1	9	30	2	46	15
1	10	40	2	48	15
1	11	20	2	50	15
1	12	40	2	52	15
1	13	20	3	55	10
1	14	20	3	58	20
1	15	30	3	61	30
1	16	20	3	64	10
1	17	20	3	67	20
1	18	30	3	70	20
1	19	20	3	73	20
1	20	20	3	76	20
1	21	20	3	79	20
1	22	20	3	82	20
1	23	20	3	85	20
1	24	20	3	88	20
1	25	20	3	91	20
1	26	10	3	94	20
1	27	20	3	97	20
1	28	20	3	100	20

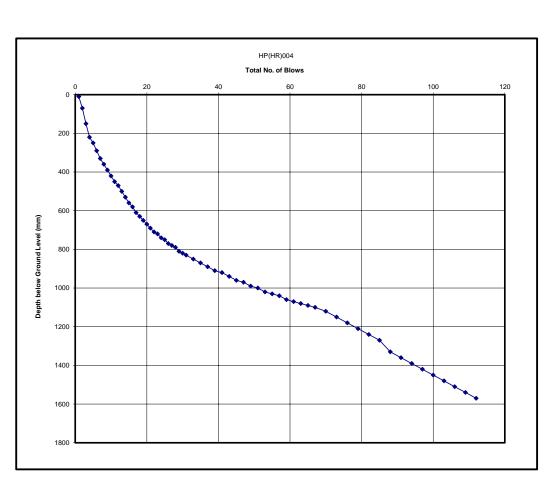
Depth	Range	Average penetration / blow. (mm)	Average CBR value (%)	Notes
10	200	63.33	2.1	
220	290	45.00	3.3	
340	490	40.00	3.8	
510	550	30.00	5.5	
570	830	21.54	8.4	
840	880	16.67	11.7	
910	925	11.25	19.3	
935	1065	7.00	35.5	·
1075	1415	6.48	39.2	

CBR values derived from DCP based on conversion derived by Kleyn and Van Heerden by using the following equation : $Log10 \ (CBR) = 2.632 - 1.28 \ (Log10 \ (mm/blow) \)$

Recorded by: Checked by:

MB

FINAL


DCP Test Results Sheet / CBR Calculation

Alliance House, South Park Way, Wakefield 41 Business Park, Wakefield, WF2 0XJ Tel: 01924 229889

Email: info@central-alliance.co.uk

Client	EDF			
Site Name	Rosefield Solar I	Farm		
Job Number	2372536			
Specification	Van Heerden			
Test Number	HP(HR)004			
Test Depth (mm)		0		
Zero Reading (mm)		10		
Date Of Test		04/11/2012		
Easting	Easting Northing			

No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration
1	1	0	1	22	20	2	55	10
1	2	60	1	23	10	2	57	10
1	3	80	1	24	20	2	59	20
1	4	70	1	25	10	2	61	10
1	5	30	1	26	20	2	63	10
1	6	40	1	27	10	2	65	10
1	7	40	1	28	10	2	67	10
1	8	30	1	29	20	3	70	20
1	9	30	1	30	10	3	73	30
1	10	30	1	31	10	3	76	30
1	11	30	2	33	20	3	79	30
1	12	20	2	35	20	3	82	30
1	13	30	2	37	20	3	85	30
1	14	30	2	39	20	3	88	60
1	15	30	2	41	10	3	91	30
1	16	20	2	43	20	3	94	30
1	17	30	2	45	20	3	97	30
1	18	20	2	47	10	3	100	30
1	19	20	2	49	20	3	103	30
1	20	20	2	51	10	3	106	30
1	21	20	2	53	20	3	109	30
						3	112	30

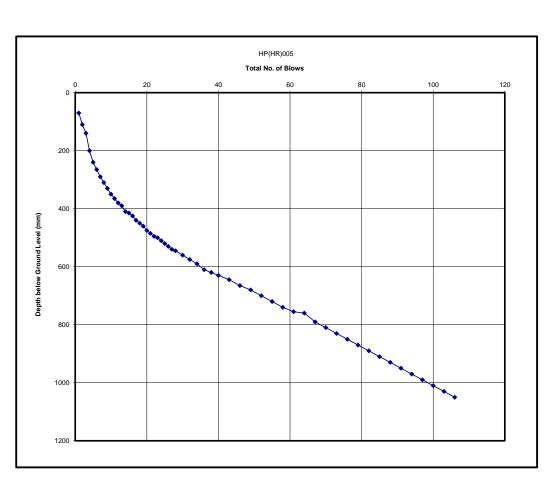
Depth	Range	Average penetration / blow. (mm)	ration / blow. (mm) Average CBR value (%)	
10	220	52.50	2.7	
250	710	27.22	6.2	
720	820	13.75	15.0	
830	1100	7.63	31.8	
1120	1270	9.44	24.2	
1330	1570	11.11	19.7	

 ${\sf CBR} \ {\sf values} \ {\sf derived} \ {\sf from} \ {\sf DCP} \ {\sf based} \ {\sf on} \ {\sf conversion} \ {\sf derived} \ {\sf by} \ {\sf Kleyn} \ {\sf and} \ {\sf Van} \ {\sf Heerden} \ {\sf by} \ {\sf using} \ {\sf the} \ {\sf following} \ {\sf equation} \ :$

Log10 (CBR) = 2.632 - 1.28 (Log10 (mm/blow))

Recorded by: RW
Checked by: MB

FINAL


DCP Test Results Sheet / CBR Calculation

Alliance House, South Park Way, Wakefield 41 Business Park, Wakefield, WF2 0XJ Tel: 01924 229889

Email: info@central-alliance.co.uk

Client	EDF			
Site Name	Rosefield Solar I	Farm		
Job Number	2372536			
Specification	Van Heerden			
Test Number	HP(HR)005			
Test Depth (mm)	0			
Zero Reading (mm)		70		
Date Of Test	04/11/2012			
Easting	Northing Elevation			

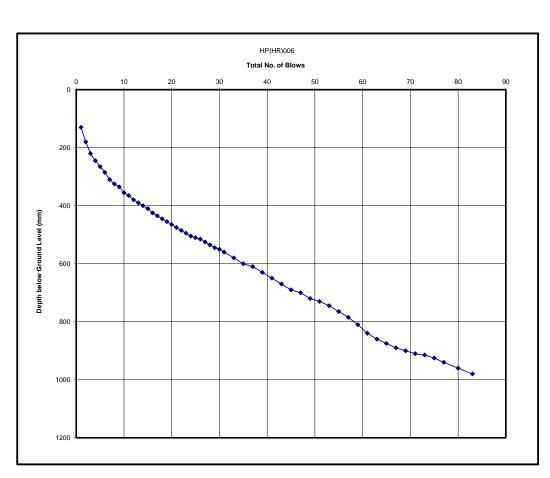
No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration
1	1	0	1	20	15	3	55	20
1	2	40	1	21	10	3	58	20
1	3	30	1	22	10	3	61	15
1	4	60	1	23	5	3	64	5
1	5	40	1	24	10	3	67	30
1	6	25	1	25	10	3	70	20
1	7	25	1	26	10	3	73	20
1	8	20	1	27	10	3	76	20
1	9	20	1	28	5	3	79	20
1	10	20	2	30	15	3	82	20
1	11	15	2	32	15	3	85	20
1	12	15	2	34	15	3	88	20
1	13	10	2	36	20	3	91	20
1	14	20	2	38	10	3	94	20
1	15	5	2	40	10	3	97	20
1	16	10	3	43	15	3	100	20
1	17	15	3	46	20	3	103	20
1	18	10	3	49	15	3	106	20
1	19	10	3	52	20		•	

Depth	Range	Average penetration / blow. (mm)	Average CBR value (%)	Notes
70	140	23.33	7.6	
200	240	50.00	2.9	
265	410	18.89	10.0	
415	540	10.00	22.5	
545	755	6.37	40.1	
760	1050	6.56	38.6	

 ${\it CBR \ values \ derived \ from \ DCP \ based \ on \ conversion \ derived \ by \ Kleyn \ and \ Van \ Heerden \ by \ using \ the \ following \ equation:}$

Log10 (CBR) = 2.632 - 1.28 (Log10 (mm/blow))

Recorded by: AW
Checked by: MB


FINAL

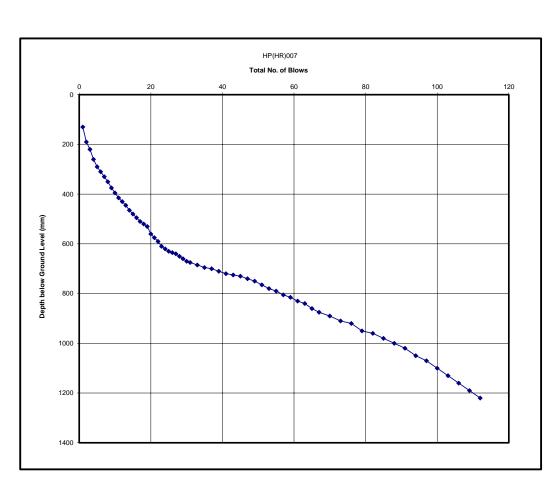
Alliance House, South Park Way, Wakefield 41 Business Park, Wakefield, WF2 0XJ Tel: 01924 229889

Client	EDF				
Site Name	Rosefield Solar I	Rosefield Solar Farm			
Job Number	2372536				
Specification	Van Heerden				
Test Number	HP(HR)006				
Test Depth (mm)		0			
Zero Reading (mm)		130			
Date Of Test		04/11/2012			
Easting	Northing	Elevation			

No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration
1	1	0	1	20	10	2	47	10
1	2	50	1	21	10	2	49	20
1	3	40	1	22	10	2	51	10
1	4	25	1	23	10	2	53	15
1	5	20	1	24	10	2	55	20
1	6	20	1	25	5	2	57	20
1	7	25	1	26	5	2	59	25
1	8	15	1	27	10	2	61	30
1	9	10	1	28	10	2	63	20
1	10	20	1	29	10	2	65	15
1	11	10	1	30	5	2	67	15
1	12	15	1	31	10	2	69	10
1	13	10	2	33	20	2	71	10
1	14	10	2	35	20	2	73	5
1	15	10	2	37	10	2	75	10
1	16	15	2	39	20	2	77	15
1	17	10	2	41	20	3	80	20
1	18	10	2	43	20	3	83	20
1	19	10	2	45	20		•	•

Depth	Range	Average penetration / blow. (mm)	Average CBR value (%)	Notes
130	220	30.00	5.5	
245	285	38.33	4.0	
310	335	28.33	5.9	
355	505	21.67	8.4	
510	545	21.67	8.4	
550	600	20.00	9.3	
610	690	16.67	11.7	
700	720	15.00	13.4	
730	810	13.33	15.6	
840	875	15.00	13.4	
890	910	11.67	18.5	
915	980	11.67	18.5	

Recorded by: AW
Checked by: MB


FINAL

Alliance House, South Park Way, Wakefield 41 Business Park, Wakefield, WF2 0XJ Tel: 01924 229889

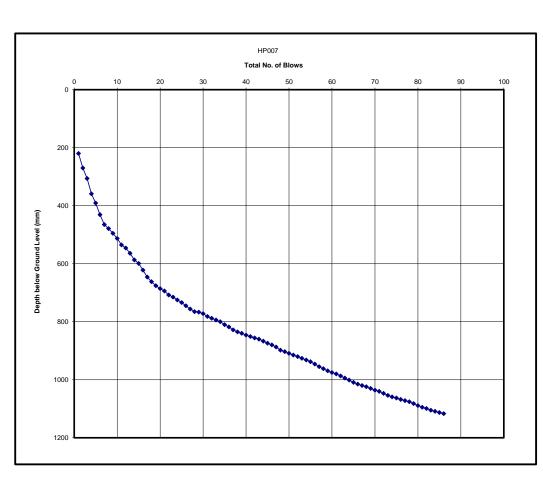
Date Of Test Easting	04/11/2012 Elevation			
Zero Reading (mm)		130		
Test Depth (mm)		0		
Test Number	HP(HR)007			
Specification	Van Heerden			
Job Number	2372536			
Site Name	Rosefield Solar I	Farm		
Client	EDF			

No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration
1	1	0	1	22	15	2	55	10
1	2	60	1	23	20	2	57	15
1	3	30	1	24	10	2	59	10
1	4	40	1	25	10	2	61	15
1	5	30	1	26	5	2	63	10
1	6	20	1	27	5	2	65	20
1	7	20	1	28	10	2	67	15
1	8	20	1	29	10	3	70	15
1	9	25	1	30	10	3	73	20
1	10	20	1	31	5	3	76	10
1	11	20	2	33	10	3	79	30
1	12	15	2	35	10	3	82	10
1	13	15	2	37	5	3	85	20
1	14	20	2	39	10	3	88	20
1	15	15	2	41	10	3	91	20
1	16	15	2	43	5	3	94	30
1	17	15	2	45	5	3	97	20
1	18	10	2	47	10	3	100	30
1	19	10	2	49	10	3	103	30
1	20	30	2	51	15	3	106	30
1	21	15	2	53	15	3	109	30
						3	112	30

Depth	Range	Average penetration / blow. (mm)	Average CBR value (%)	Notes
130	260	32.50	5.0	
290	530	18.00	10.6	
560	635	15.00	13.4	
640	670	8.75	26.7	
675	740	4.17	69.0	
750	840	6.25	41.0	
860	910	7.29	33.7	
920	950	6.67	37.8	·
960	1220	8.18	29.1	

Recorded by: Checked by:

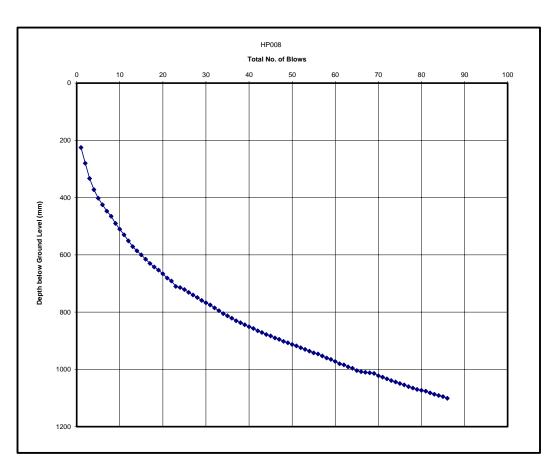
FINAL


RW MB

Alliance House, South Park Way, Wakefield 41 Business Park, Wakefield, WF2 0XJ Tel: 01924 229889

Client	EDF				
Site Name	Rosefield Solar I	Rosefield Solar Farm			
Job Number	2372536				
Specification	Van Heerden				
Test Number	HP007				
Test Depth (mm)		0			
Zero Reading (mm)		220			
Date Of Test	Date Of Test				
Easting	Northing	Elevation			

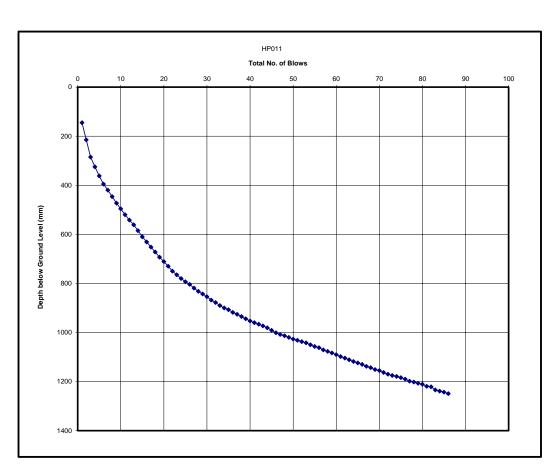
No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration
1	1	0	1	30	5	1	59	7
1	2	50	1	31	10	1	60	6
1	3	36	1	32	6	1	61	5
1	4	53	1	33	6	1	62	7
1	5	32	1	34	6	1	63	7
1	6	40	1	35	10	1	64	7
1	7	34	1	36	8	1	65	8
1	8	14	1	37	10	1	66	6
1	9	16	1	38	7	1	67	5
1	10	18	1	39	5	1	68	4
1	11	22	1	40	6	1	69	6
1	12	11	1	41	5	1	70	6
1	13	18	1	42	5	1	71	4
1	14	23	1	43	4	1	72	7
1	15	12	1	44	7	1	73	7
1	16	23	1	45	7	1	74	5
1	17	24	1	46	6	1	75	4
1	18	16	1	47	7	1	76	5
1	19	14	1	48	11	1	77	4
1	20	10	1	49	5	1	78	4
1	21	8	1	50	6	1	79	6
1	22	14	1	51	6	1	80	7
1	23	7	1	52	5	1	81	6
1	24	10	1	53	6	1	82	4
1	25	9	1	54	6	1	83	6
1	26	11	1	55	6	1	84	4
1	27	11	1	56	8	1	85	4
1	28	9	1	57	9	1	86	4
1	29	2	1	58	7			


Depth	Range	Average penetration / blow. (mm)	Average CBR value (%)	Notes
200	465	35.00	4.5	
479	676	17.58	10.9	
686	694	9.00	25.7	
708	765	10.14	22.1	
767	835	7.00	35.5	
840	856	5.25	51.3	
860	898	7.00	35.5	
903	1117	5.76	45.5	

Alliance House, South Park Way, Wakefield 41 Business Park, Wakefield, WF2 0XJ Tel: 01924 229889

Northing	04/11/2012 Elevation			
	04/11/2012			
Date Of Test				
)	225			
	0			
HP008	HP008			
Van Heerden				
2372536				
Rosefield Solar I	Rosefield Solar Farm			
EDF	EDF			
	Rosefield Solar 2372536 Van Heerden			

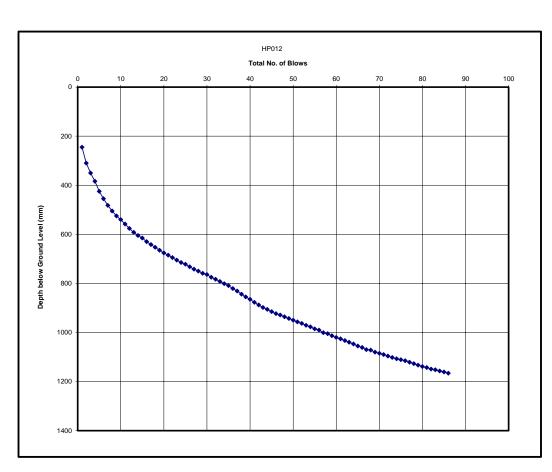
No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration
1	1	0	1	30	8	1	59	5
1	2	55	1	31	8	1	60	7
1	3	53	1	32	10	1	61	8
1	4	39	1	33	10	1	62	4
1	5	30	1	34	10	1	63	7
1	6	23	1	35	8	1	64	5
1	7	22	1	36	8	1	65	8
1	8	18	1	37	9	1	66	4
1	9	25	1	38	7	1	67	2
1	10	20	1	39	7	1	68	2
1	11	20	1	40	7	1	69	2
1	12	21	1	41	6	1	70	8
1	13	20	1	42	8	1	71	5
1	14	15	1	43	6	1	72	6
1	15	14	1	44	7	1	73	6
1	16	15	1	45	5	1	74	5
1	17	15	1	46	7	1	75	5
1	18	12	1	47	5	1	76	5
1	19	11	1	48	7	1	77	6
1	20	13	1	49	5	1	78	5
1	21	15	1	50	6	1	79	5
1	22	10	1	51	5	1	80	3
1	23	19	1	52	6	1	81	3
1	24	4	1	53	6	1	82	6
1	25	7	1	54	6	1	83	5
1	26	10	1	55	6	1	84	4
1	27	9	1	56	4	1	85	4
1	28	9	1	57	7	1	86	6
1	29	10	1	58	7		•	•


Depth	Range	Average penetration / blow. (mm)	Average CBR value (%)	Notes
225	402	35.40	4.5	
425	615	19.36	9.7	
630	681	13.20	15.8	
691	710	14.50	14.0	
714	813	8.58	27.3	
821	857	7.33	33.5	
865	1004	6.13	42.1	
1008	1012	2.67	122.1	
1014	1101	4.94	55.4	

Alliance House, South Park Way, Wakefield 41 Business Park, Wakefield, WF2 0XJ Tel: 01924 229889

Client	EDF		
Site Name	Rosefield Solar Farm		
Job Number	2372536		
Specification	Van Heerden		
Test Number	HP011		
Test Depth (mm)		0	
Zero Reading (mm)		145	
Date Of Test		04/11/2012	
Easting	Northing	Elevation	

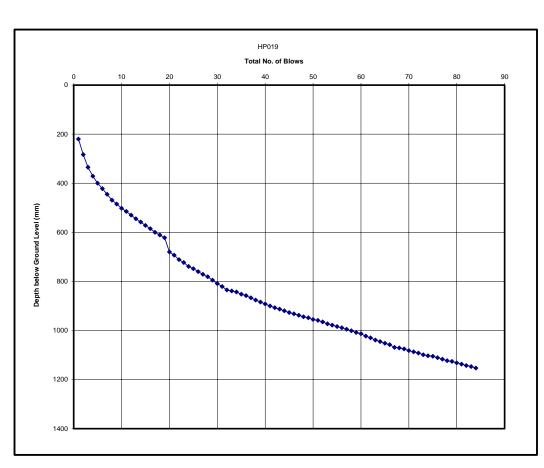
No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration
1	1	0	1	30	11	1	59	6
1	2	70	1	31	14	1	60	7
1	3	70	1	32	10	1	61	8
1	4	40	1	33	12	1	62	6
1	5	37	1	34	10	1	63	7
1	6	33	1	35	7	1	64	7
1	7	25	1	36	11	1	65	6
1	8	26	1	37	8	1	66	6
1	9	27	1	38	9	1	67	8
1	10	23	1	39	9	1	68	5
1	11	24	1	40	9	1	69	8
1	12	22	1	41	7	1	70	4
1	13	19	1	42	6	1	71	8
1	14	24	1	43	7	1	72	7
1	15	25	1	44	8	1	73	5
1	16	21	1	45	10	1	74	4
1	17	21	1	46	10	1	75	5
1	18	20	1	47	7	1	76	6
1	19	21	1	48	5	1	77	8
1	20	18	1	49	7	1	78	4
1	21	19	1	50	7	1	79	5
1	22	20	1	51	5	1	80	4
1	23	15	1	52	5	1	81	8
1	24	15	1	53	5	1	82	2
1	25	13	1	54	8	1	83	13
1	26	11	1	55	7	1	84	5
1	27	15	1	56	5	1	85	4
1	28	13	1	57	9	1	86	6
1	29	11	1	58	6		•	


Depth	Range	Average penetration / blow. (mm)	Average CBR value (%)	Notes
145	285	215.00	0.4	
325	730	545.78	0.1	
750	900	828.92	0.1	
907	1221	1084.57	0.1	
1234	1249	1241.25	0.0	

Alliance House, South Park Way, Wakefield 41 Business Park, Wakefield, WF2 0XJ Tel: 01924 229889

Eastina	Northina	Elevation			
Date Of Test	04/11/2012				
Zero Reading (mm)	245			
Test Depth (mm)		0			
Test Number	HP012				
Specification	Van Heerden	•			
Job Number	2372536				
Site Name	Rosefield Solar I	Farm			
Client	EDF	EDF			

No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration
1	1	0	1	30	5	1	59	8
1	2	65	1	31	11	1	60	7
1	3	40	1	32	8	1	61	6
1	4	34	1	33	9	1	62	7
1	5	41	1	34	9	1	63	7
1	6	30	1	35	8	1	64	7
1	7	27	1	36	12	1	65	8
1	8	23	1	37	10	1	66	6
1	9	20	1	38	13	1	67	9
1	10	15	1	39	11	1	68	2
1	11	18	1	40	10	1	69	8
1	12	18	1	41	12	1	70	5
1	13	16	1	42	11	1	71	5
1	14	13	1	43	10	1	72	6
1	15	10	1	44	8	1	73	6
1	16	15	1	45	9	1	74	5
1	17	12	1	46	8	1	75	4
1	18	11	1	47	6	1	76	4
1	19	12	1	48	7	1	77	6
1	20	11	1	49	7	1	78	6
1	21	9	1	50	7	1	79	6
1	22	10	1	51	7	1	80	6
1	23	10	1	52	6	1	81	4
1	24	10	1	53	8	1	82	6
1	25	7	1	54	6	1	83	3
1	26	10	1	55	8	1	84	5
1	27	10	1	56	5	1	85	4
1	28	8	1	57	11	1	86	5
1	29	9	1	58	4			


Depth	th Range Average penetration / blow. (mm) Ave		Average CBR value (%)	Notes
245	310	277.50	0.3	
350	455	403.50	0.2	
482	605	547.88	0.1	
615	898	758.24	0.1	
906	1166	1047.02	0.1	

Alliance House, South Park Way, Wakefield 41 Business Park, Wakefield, WF2 0XJ Tel: 01924 229889

Easting	Northing	Elevation			
Date Of Test		04/11/2012			
Zero Reading (mm)	220			
Test Depth (mm)		0			
Test Number	HP019	HP019			
Specification	Van Heerden	Van Heerden			
Job Number	2372536	•			
Site Name	Rosefield Solar I	Farm			
Client	EDF	EDF			

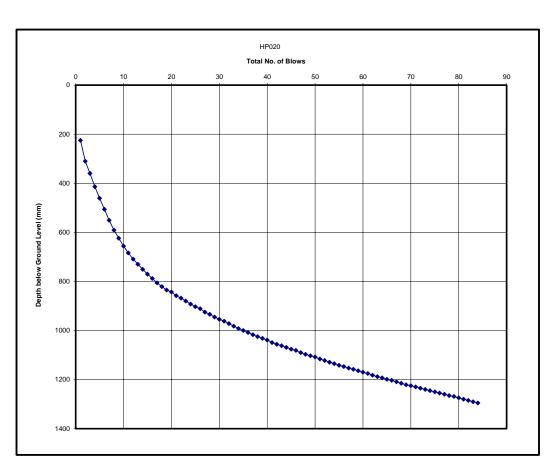
No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration
1	1	0	1	30	14	1	57	6
1	2	63	1	31	12	1	58	6
1	3	52	1	32	14	1	59	7
1	4	36				1	60	5
1	5	29	1	33	4	1	61	10
1	6	22	1	34	4	1	62	7
1	7	23	1	35	9	1	63	9
1	8	24	1	36	6	1	64	6
1	9	16	1	37	9	1	65	7
1	10	17	1	38	9	1	66	6
1	11	13	1	39	8	1	67	11
1	12	15	1	40	8	1	68	2
1	13	15	1	41	8	1	69	4
1	14	13	1	42	7	1	70	7
1	15	14	1	43	6	1	71	5
1	16	13	1	44	7	1	72	5
1	17	15	1	45	7	1	73	7
1	18	11	1	46	5	1	74	4
1	19	11	1	47	6	1	75	2
1	20	58	1	48	6	1	76	6
1	21	13	1	49	4	1	77	6
1	22	18	1	50	7	1	78	6
1	23	12	1	51	4	1	79	3
1	24	16	1	52	6	1	80	6
1	25	9	1	53	8	1	81	5
1	26	12	1	54	5	1	82	6
1	27	11	1	55	6	1	83	4
1	28	10	1	56	5	1	84	6
1	29	14					•	•

Depth	th Range Average penetration / blow. (mm)		Average CBR value (%)	Notes
220	335	38.33	4.0	
371	445	27.50	6.2	
469	611	15.09	13.3	
622	680	34.50	4.6	
693	835	12.92	16.2	
839	843	7.33	33.5	
852	1008	6.60	38.3	
1013	1153	5.80	45.2	

Recorded by : Checked by :

FINAL

AW

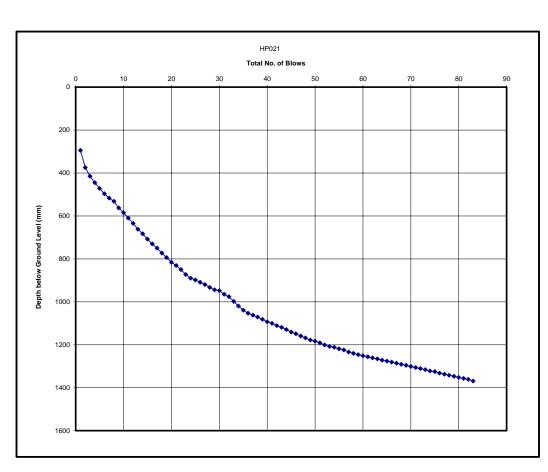

MB

Alliance House, South Park Way, Wakefield 41 Business Park, Wakefield, WF2 0XJ Tel: 01924 229889

Easting	Northing	Elevation		
Date Of Test		04/11/2012		
Zero Reading (mm)	225		
Test Depth (mm)		0		
Test Number	HP020	HP020		
Specification	Van Heerden	Van Heerden		
Job Number	2372536			
Site Name	Rosefield Solar I	Farm		
Client	EDF			

No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration
1	1	0	1	29	11	1	57	6
1	2	85	1	30	9	1	58	5
1	3	50	1	31	8	1	59	6
1	4	54	1	32	10	1	60	6
1	5	47	1	33	10	1	61	5
1	6	45	1	34	10	1	62	7
1	7	45	1	35	8	1	63	6
1	8	40	1	36	8	1	64	5
1	9	33	1	37	9	1	65	6
1	10	32	1	38	8	1	66	4
1	11	28	1	39	7	1	67	6
1	12	25	1	40	7	1	68	6
1	13	21	1	41	10	1	69	6
1	14	21	1	42	7	1	70	4
1	15	19	1	43	6	1	71	5
1	16	18	1	44	7	1	72	5
1	17	18	1	45	7	1	73	5
1	18	15	1	46	5	1	74	5
1	19	14	1	47	9	1	75	5
1	20	8	1	48	7	1	76	5
1	21	15	1	49	6	1	77	5
1	22	10	1	50	5	1	78	5
1	23	12	1	51	8	1	79	4
1	24	12	1	52	6	1	80	5
1	25	11	1	53	7	1	81	6
1	26	8	1	54	6	1	82	5
1	27	14	1	55	7	1	83	5
1	28	9	1	56	5	1	84	5

Depth	Range	Average penetration / blow. (mm)	Average CBR value (%)	Notes
225	310	42.50	3.5	
360	656	43.25	3.5	
684	730	24.67	7.1	
751	835	17.50	11.0	
843	1039	9.71	23.3	
1049	1295	5.82	45.0	



Alliance House, South Park Way, Wakefield 41 Business Park, Wakefield, WF2 0XJ

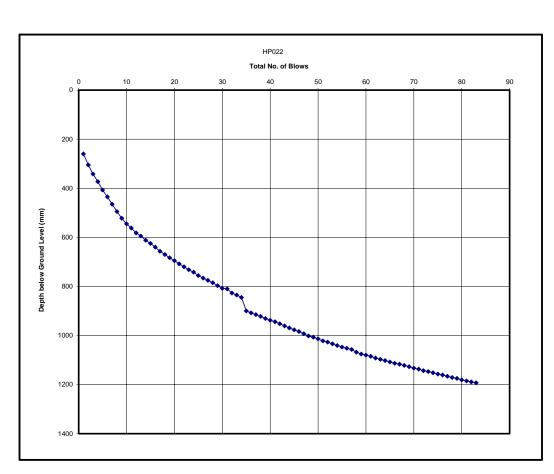
Tel: 01924 229889 Email: info@central-alliance.co.uk

Client	EDF		
Site Name	Rosefield Solar I	Farm	
Job Number	2372536		
Specification	Specification Van Heerden		
Test Number			
Test Depth (mm)	Test Depth (mm)		
Zero Reading (mm)		295	
Date Of Test	04/11/2012		
Easting	Northing	Elevation	

No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration
1	1	0	1	29	11	1	57	10
1	2	80	1	30	4	1	58	6
1	3	40	1	31	17	1	59	6
1	4	30	1	32	11	1	60	5
1	5	27	1	33	22	1	61	5
1	6	25	1	34	22	1	62	5
1	7	20	1	35	19	1	63	5
1	8	15	1	36	14	1	64	6
1	9	31	1	37	9	1	65	4
1	10	22	1	38	9	1	66	5
1	11	25	1	39	11	1	67	5
1	12	25	1	40	11	1	68	5
1	13	27	1	41	7	1	69	5
1	14	21	1	42	11	1	70	5
1	15	25	1	43	8	1	71	5
1	16	22	1	44	10	1	72	5
1	17	20	1	45	12	1	73	5
1	18	23	1	46	8	1	74	6
1	19	21	1	47	10	1	75	3
1	20	22	1	48	9	1	76	7
1	21	15	1	49	10	1	77	5
1	22	19	1	50	5	1	78	5
1	23	23	1	51	8	1	79	5
1	24	17	1	52	10	1	80	5
1	25	8	1	53	7	1	81	5
1	26	11	1	54	4	1	82	4
1	27	11	1	55	7	1	83	8
1	28	13	1	56	5		•	•

Depth	Range	Average penetration / blow. (mm)	Average CBR value (%)	Notes
295	375	40.00	3.8	
415	532	26.17	6.6	
563	816	23.67	7.5	
850	890	19.67	9.5	
898	944	10.80	20.4	
948	1039	15.83	12.5	
1053	1369	6.88	36.3	

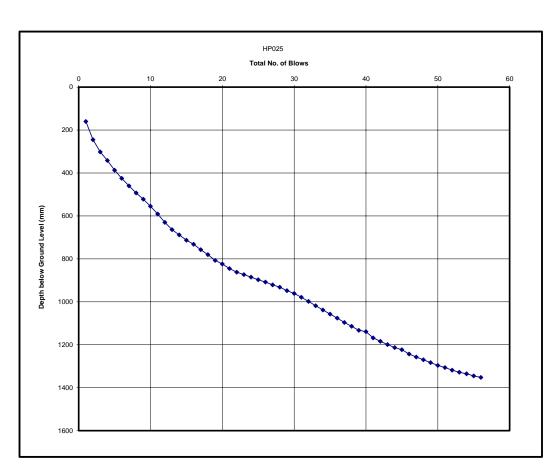
Recorded by : Checked by : FINAL


MB

Alliance House, South Park Way, Wakefield 41 Business Park, Wakefield, WF2 0XJ Tel: 01924 229889

Client	Elient EDF		
Site Name	Site Name Rosefield Solar		
Job Number	2372536		
Specification	Specification Van Heerden		
Test Number			
Test Depth (mm)	Test Depth (mm)		
Zero Reading (mm)		260	
Date Of Test		04/11/2012	
Easting	Elevation		

No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration
1	1	0	1	29	12	1	57	5
1	2	45	1	30	11	1	58	11
1	3	37	1	31	2	1	59	8
1	4	31	1	32	17	1	60	4
1	5	34	1	33	8	1	61	5
1	6	28	1	34	10	1	62	7
1	7	30	1	35	55	1	63	5
1	8	30	1	36	8	1	64	5
1	9	27	1	37	7	1	65	6
1	10	23	1	38	7	1	66	5
1	11	17	1	39	9	1	67	4
1	12	20	1	40	7	1	68	5
1	13	13	1	41	6	1	69	5
1	14	17	1	42	8	1	70	6
1	15	13	1	43	9	1	71	4
1	16	15	1	44	8	1	72	6
1	17	17	1	45	8	1	73	4
1	18	13	1	46	7	1	74	5
1	19	13	1	47	9	1	75	5
1	20	12	1	48	9	1	76	4
1	21	13	1	49	5	1	77	5
1	22	12	1	50	7	1	78	5
1	23	12	1	51	8	1	79	4
1	24	10	1	52	5	1	80	6
1	25	14	1	53	7	1	81	4
1	26	10	1	54	7	1	82	4
1	27	9	1	55	6	1	83	4
1	28	10	1	56	5		- I	


Depth	pth Range Average penetration / blow. (m		Average CBR value (%)	Notes
260	522	29.11	5.7	
545	808	13.62	15.1	
810	827	9.50	24.0	
837	892	9.00	25.7	
899	1195	7.10	34.9	

Alliance House, South Park Way, Wakefield 41 Business Park, Wakefield, WF2 0XJ Tel: 01924 229889

Easting	Northing	Elevation
Date Of Test		04/11/2012
Zero Reading (mm)		160
Test Depth (mm)	0	
Test Number		
Specification		
Job Number	2372536	
Site Name	Rosefield Solar F	Farm
Client	EDF	
Client		

No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration	No. Blows	Total Blows	Penetration
1	1	0	1	20	17	1	39	19
1	2	85	1	21	21	1	40	6
1	3	57	1	22	17	1	41	29
1	4	40	1	23	11	1	42	16
1	5	45	1	24	12	1	43	15
1	6	38	1	25	12	1	44	14
1	7	35	1	26	11	1	45	10
1	8	33	1	27	13	1	46	20
1	9	29	1	28	11	1	47	14
1	10	33	1	29	16	1	48	13
1	11	36	1	30	13	1	49	13
1	12	39	1	31	18	1	50	13
1	13	34	1	32	19	1	51	10
1	14	24	1	33	20	1	52	12
1	15	25	1	34	20	1	53	10
1	16	19	1	35	19	1	54	7
1	17	25	1	36	19	1	55	10
1	18	23	1	37	20	1	56	7
1	19	27	1	38	18		•	

Depth	Range Average penetration / blow. (mm) Average CBR value (%)		Notes	
160	245	42.50	3.5	
302	630	38.50	4.0	
664	845	23.89	7.4	
862	961	12.89	16.3	
979	1352	15.04	13.3	

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Safer Rig Services Portview Road Avonmouth

Bristol BS11 9JE SPT Hammer Ref: WLS03

Test Date: 11/04/2024

Report Date: 15/04/2024

File Name: CA WLS03.spt

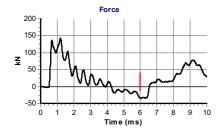
Test Operator: MS

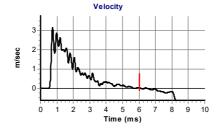
Instrumented Rod Data

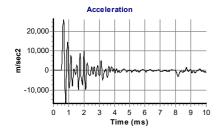
Diameter d_r (mm): 54

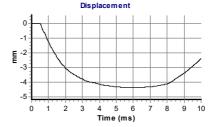
Wall Thickness t_r (mm): 6.8

Assumed Modulus E_a (GPa): 200


Accelerometer No.1: 73534


Accelerometer No.2: 73538


SPT Hammer Information


Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 12.2

Comments / Location

Calculations

Area of Rod A (mm2): 1008 Theoretical Energy E_{theor} (J): 473 Measured Energy E_{meas} (J): 316

Energy Ratio E_r (%):

67

Signed:

Title: Equipment Inspector

Appendix B Exploratory Hole Photographs

PHOTOGRAPH 1 – HP(HR)007 – 0.00m to 1.50m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP(HR)007

PHOTOGRAPH 2 - HP(HR)007 - 0.00m to 1.50m bgl (Spoil)

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP(HR)007

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP(HR)007

PHOTOGRAPH 1 – HP004 – 0.00m to 1.50m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP004

PHOTOGRAPH 2 – HP004 – 0.00m to 1.50m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP004

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP004

PHOTOGRAPH 1 - HP005 - 0.00m to 0.00m bgl

PHOTOGRAPH 2 – HP005 – 0.00m to 0.00m bgl (Spoil)

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP005

PHOTOGRAPH 3 – HP005 – 0.00m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP005

PHOTOGRAPH 1 – HP006 – 0.00m to 1.50m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP006

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP006

PHOTOGRAPH 3 - HP006 - 0.00m to 1.50m bgl (Spoil)

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP006

PHOTOGRAPH 1 – HP007 – 0.00m to 1.30m bgl

Client	EDF
Project	2372536 - Rosefield Solar Farm
Title	HP007

Client EDF
Project 2372536 – Rosefield Solar Farm
Title HP007

PHOTOGRAPH 1 – HP008 – 0.00m to 1.30m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP008

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP008

PHOTOGRAPH 1 – HP(C)010 – 0.00m to 1.50m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP(C)010

PHOTOGRAPH 2 – HP(C)010 – 0.00m to 1.50m bgl (Spoil)

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP(C)010

PHOTOGRAPH 1 – HP011 – 0.00m to 1.50m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP011

PHOTOGRAPH 2 – HP011 – 0.00m to 1.50m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP011

PHOTOGRAPH 1 – HP012 – 0.00m to 1.50m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP012

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP012

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP019

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP019

PHOTOGRAPH 2 – HP019 – 0.00m to 1.40m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP019

PHOTOGRAPH 1 – HP020 – 0.00m to 1.20m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP020

PHOTOGRAPH 2 – HP020 – 0.00m to 1.20m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP020

PHOTOGRAPH 3 – HP020 – 0.00m to 1.20m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP020

PHOTOGRAPH 1 – HP – 0.00m to 1.50m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP021

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP021

PHOTOGRAPH 3 – HP – 0.00m to 1.50m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP021

PHOTOGRAPH 1 – HP022 – 0.00m to 1.30m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP022

Client	EDF	
Project	2372536-Rosefield Solar Farm	

HP022

Title

PHOTOGRAPH 3 – HP022 – 0.00m to 1.30m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP022

PHOTOGRAPH 1 – HP025 – 0.00m to 1.40m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP025

PHOTOGRAPH 2 – HP025 – 0.00m to 1.40m bgl (Spoil)

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP025

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP025

PHOTOGRAPH 1 – HP026 – 0.00m to 1.50m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP026

PHOTOGRAPH 1 – HP027 – 0.00m to 1.50m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HP027

PHOTOGRAPH 1 – HPC007 – 0.00m to 1.50m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HPC007

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	HPC007

PHOTOGRAPH 1 – TP(C)001 – 0.00m to 3.00m bgl

Client	EDF
Project	2372536- Rosefield Solar Farm
Title	TP(C)001

PHOTOGRAPH 2 - TP(C)001 - 0.00m to 3.00m bgl

Client	EDF
Project	2372536- Rosefield Solar Farm
Title	TP(C)001

PHOTOGRAPH 3 – TP(C)001 – 0.00m to 3.00m bgl

Client	EDF
Project	2372536- Rosefield Solar Farm
Title	TP(C)001

PHOTOGRAPH 4 - TP(C)001 - 0.00m to 3.00m bgl (Spoil)

Client	EDF
Project	2372536- Rosefield Solar Farm
Title	TP(C)001

PHOTOGRAPH 1 – TP014 – 0.00m to 0.00m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	TP014

PHOTOGRAPH 2 – TP014 – 0.00m to 0.00m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	TP014

PHOTOGRAPH 3 – TP014 – 0.00m to 0.00m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	TP014

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	TP014

PHOTOGRAPH 5 – TP014 – 0.00m to 0.00m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	TP014

PHOTOGRAPH 1 – WS013 – 0.00m to 1.20m bgl

PHOTOGRAPH 2 – WS013 – 1.20m to 2.00m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	WS013

PHOTOGRAPH 3 – WS013 – 2.00m to 3.00m bgl

PHOTOGRAPH 4 – WS013 – 3.00m to 4.00m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	WS013

PHOTOGRAPH 5 – WS013 – 4.00m to 5.00m bgl

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	WS013

PHOTOGRAPH 2 – WS015 – 1.20m to 2.00m bgl

Client	EDF
Project	2372536 - Rosefield Solar Farm
Title	WS015

Client	EDF
Project	2372536 - Rosefield Solar Farm
Title	WS015

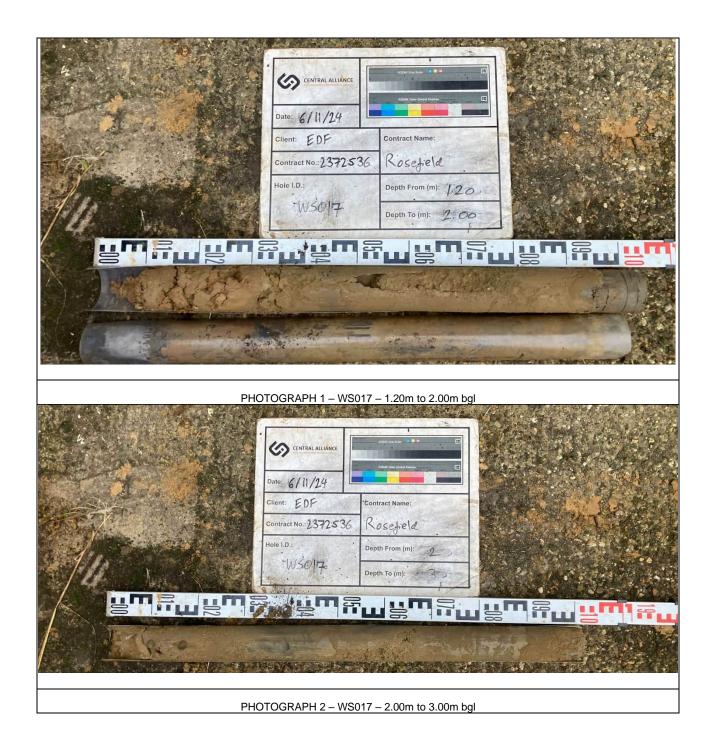
Client	EDF
Project	2372536 - Rosefield Solar Farm
Title	WS015

PHOTOGRAPH 1 – WS016 – 0.00m to 1.20m bgl

Client	EDF
Project	2372536 - Rosefield Solar Farm
Title	WS016

PHOTOGRAPH 3 – WS016 – 1.20m to 2.00m bgl

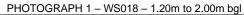
Client	EDF
Project	2372536 - Rosefield Solar Farm
Title	WS016



PHOTOGRAPH 5 - WS016 - 3.00m to 3.80m bgl

Client	EDF
Project	2372536 - Rosefield Solar Farm
Title	WS016

Client	EDF
Project	2372536-Rosefield Solar Farm
Title	WS017



Client	EDF
Project	2372536-Rosefield Solar Farm
Title	WS017

PHOTOGRAPH 2 – WS018 – 2.00m to 3.00m bgl

Client	EDF
Project	2372537-Rosefield Solar Farm
Title	WS018

PHOTOGRAPH 3 - WS018 - 3.00m to 4.00m bgl

Client	EDF
Project	2372537-Rosefield Solar Farm
Title	WS018

Appendix C Thermal Resistivity Test Results

STRUCTURAL SOILS LTD INSITU TESTING REPORT

Report No. 785676R.01(00) Office Location: Castleford

Date 11-November-2024 Contract: Land West of Calvert

Central Alliance, Client Alliance House, Address

South Park Way,

Wakefield 41 Business Park,

Wakefield. WF2 0XJ

For the Attention of:

Order received 01-November-2024 Client Reference None Testing Started 06-November-2024 Client Order No. None Testing Completed 08-November-2024 Instruction Type Written

Tests marked 'Not UKAS Accredited' in this report are not included in the UKAS Accreditation Schedule for our Laboratory.

UKAS Accredited Tests

* 15 no. In-situ Thermal Resistivity Tests in accordance with IEEE 442:2017

Not UKAS Accredited Tests

The results represent the ground conditions at the specified locations and depths at the time of testing.

Please Note: Remaining samples will be retained for a period of one month from today and will then be disposed of .

Test were undertaken on samples 'as received' unless otherwise stated.

Opinions and interpretations expressed in this report are outside the scope of accreditation for this laboratory.

Results relate only to items tested

This report shall not be reproduced except in full without written permission of SSL Laboratories

Structural Soils Ltd, The Potteries, Pottery Street, Castleford, WF10 1NJ Tel.01977552255, email

@soils.co.uk

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | GrfcText L - LAB VERIFICATION REPORT - v02 - A4P | 785676.GINT.GPJ - v10_01. Structural Soils Lid, Branch Office - Castleford: The Potteries, Potteries, Pottery Street, Castleford, West Yorkshire, WF10 1NJ. Tel: 01977-552255, Fax: 01977-552299, Web: www.soils.co.uk, Email: ask@soils.co.uk. | 11/11/24 - 12:02 | TF1 |

TESTING VERIFICATION CERTIFICATE

1774

The test results included in this report are certified as:-

ISSUE STATUS: FINAL

In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

This testing verification certificate covers all testing compiled on or before the following datetime: 11/11/2024 12:01:52.

Testing reported after this date is not covered by this Verification Certificate.

Approved Signatory
(National Manager)

(Head Office)
Bristol Laboratory
Unit 1A, Princess Street
Bedminster
Bristol
BS3 4AG

Castleford Laboratory
The Potteries, Pottery Street
Castleford
West Yorkshire
WF10 1NJ

Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tunbridge Wells Laboratory Bridge House, North Farm Road Tunbridge Wells Kent TN2 3DR

STRUCTURAL SOILS LTD

Contract:

Job No:

Land West of Calvert

SUMMARY OF IN-SITU THERMAL RESISTIVITY TESTS

In accordance with IEEE 442:2017

Exploratory Position	Location	Depth of Probe (m)	Date of Test	Soil Temp (°C)	Average Thermal Conductivity (W/K.m)	SD Thermal Conductivity (W/K.m)	Average Thermal Resistivity (K.cm/W)	SD Thermal Resistivity (K.cm/W)	Weather Conditions	Sample Description
TP002	-	0.30	06/11/24	11.8	1.495	0.017	66.89	0.76	Overcast, 10.0°C	Yellowish light brown CLAY
TP002	-	0.45	06/11/24	12.3	1.699	0.037	58.86	1.28	Overcast, 10.0°C	Yellowish light brown CLAY
TP002	-	0.70	06/11/24	12.8	2.661	0.119	37.58	1.68	Overcast, 11.0°C	Yellowish light brown CLAY
TP003	-	0.40	06/11/24	12.1	1.623	0.051	61.61	1.94	Overcast, 11.0°C	Yellowish light brown CLAY
TP003	-	0.65	06/11/24	12.4	1.870	0.045	53.48	1.29	Overcast, 11.0°C	Yellowish light brown CLAY
TP003	-	0.80	06/11/24	12.5	1.852	0.050	54.00	1.46	Overcast, 11.0°C	Yellowish light brown CLAY
TP014	-	0.30	07/11/24	11.7	1.651	0.024	60.57	0.88	Overcast, 11.0°C	Dark Brown CLAY
TP014	-	0.50	07/11/24	12.1	1.750	0.031	57.14	1.01	Overcast, 11.0°C	Dark Brown CLAY

M	STRUCTURAL SOILS 1a Princess Street Bedminster
grant of the same	Bristol BS3 4AG

Compiled By Date 11.11.24 Contract:

Land West of Calvert

Contract Ref:

SUMMARY OF IN-SITU THERMAL RESISTIVITY TESTS

In accordance with IEEE 442:2017

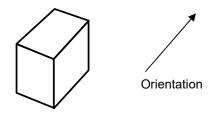
Exploratory Position	Location	Depth of Probe (m)	Date of Test	Soil Temp (°C)	Average Thermal Conductivity (W/K.m)	SD Thermal Conductivity (W/K.m)	Average Thermal Resistivity (K.cm/W)	SD Thermal Resistivity (K.cm/W)	Weather Conditions	Sample Description
TP014	-	0.80	07/11/24	12.4	2.403	0.047	41.61	0.81	Overcast, 11.0°C	Orangish brown CLAY
TPC001	-	0.30	07/11/24	12.0	1.742	0.026	57.41	0.86	Overcast, 12.0°C	Dark brown CLAY
TPC001	-	0.60	07/11/24	12.4	1.298	0.046	77.04	2.73	Overcast, 12.0°C	Dark brown CLAY
TPC001	-	0.80	07/11/24	12.8	1.365	0.008	73.26	0.43	Overcast, 12.0°C	Orangish brown gravelly sandy CLAY
TPC011	-	0.30	08/11/24	11.2	1.801	0.021	55.52	0.65	Overcast, 8.0°C	Light brown CLAY
TPC011	-	0.50	08/11/24	11.7	1.442	0.008	69.35	0.38	Overcast, 8.0°C	Yellowish light brown CLAY
TPC011	-	0.80	08/11/24	12.2	1.501	0.027	66.62	1.20	Overcast, 9.0°C	Yellowish light brown CLAY

gn.	STRUCTURAL SOILS 1a Princess Street
	Bedminster
III.	Bristol
0	BS3 4AG

Compiled By		Date
	1	1.11.24
Contract:		

Land West of Calvert

Contract Ref:

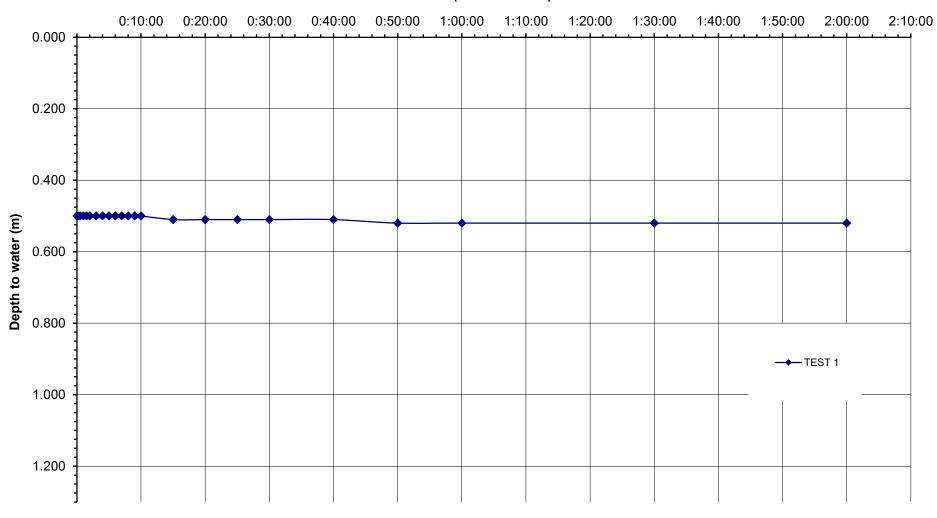


Appendix D Soakaway Test Results

SOAKAWAY TEST - DATA SHEET

Job Name	Rosefield		Job Number	2372536	
Trial Pit Number	ers:	TP002	Test Numbers	1	06/11/2024

Test 1		Test 2	Test 3	
Trial Pit Dim	ensions	Trial Pit Dimensions	Trial Pit Dimensions	Trial Pit Dimensions
Length:	3.00 m	Length:	Length:	Length:
Width:	0.50 m	Width:	Width:	Width:
Depth:	1.50 m	Depth:	Depth:	Depth:
	-	·		
Effective De	pth: 1.00 m	Effective Depth:	Effective Depth:	Effective Depth:


Test Data Test Data Test Data Test Data

Time	Depth	Time	Depth	Time	Depth	Time	Depth
(hh:mm:ss)	(mbgl)	(hh:mm:ss)	(mbgl)	(hh:mm:ss)	(mbgl)	(hh:mm:ss)	(mbgl)
0:00:00	0.500	0:00:00		0:00:00		0:00:00	
0:00:15	0.500	0:00:15		0:00:15		0:00:15	
0:00:30	0.500	0:00:30		0:00:30		0:00:30	
0:01:00	0.500	0:01:00		0:01:00		0:01:00	
0:01:30	0.500	0:01:30		0:01:30		0:01:30	
0:02:00	0.500	0:02:00		0:02:00		0:02:00	
0:03:00	0.500	0:03:00		0:03:00		0:03:00	
0:04:00	0.500	0:04:00		0:04:00		0:04:00	
0:05:00	0.500	0:05:00		0:05:00		0:05:00	
0:06:00	0.500	0:06:00		0:06:00		0:06:00	
0:07:00	0.500	0:07:00		0:07:00		0:07:00	
0:08:00	0.500	0:08:00		0:08:00		0:08:00	
0:09:00	0.500	0:09:00		0:09:00		0:09:00	
0:10:00	0.500	0:10:00		0:10:00		0:10:00	
0:15:00	0.510	0:15:00		0:15:00		0:15:00	
0:20:00	0.510	0:20:00		0:20:00		0:20:00	
0:25:00	0.510	0:25:00		0:25:00		0:25:00	
0:30:00	0.510	0:30:00		0:30:00		0:30:00	
0:40:00	0.510	0:40:00		0:40:00		0:40:00	
0:50:00	0.520	0:50:00		0:50:00		0:50:00	
1:00:00	0.520	1:00:00		1:00:00		1:00:00	
1:30:00	0.520	1:30:00		1:30:00		1:30:00	
2:00:00	0.520	2:00:00		2:00:00		2:00:00	
3:00:00		3:00:00		3:00:00		3:00:00	
4:00:00		4:00:00		4:00:00		4:00:00	
5:00:00		5:00:00		5:00:00		5:00:00	
6:00:00		6:00:00		6:00:00		6:00:00	
7:00:00		7:00:00		7:00:00		7:00:00	
8:00:00		8:00:00		8:00:00		8:00:00	
							

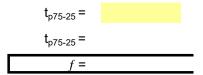
Soakaway Test

Time (hrs:mins:secs)

SOAKAWAY TEST - CALCULATION SHEET

Position:

Nomenclature:

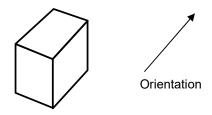

Symbol:	Function:	Units:
f	Soil Infiltration Rate	m/s
V _{p75-25}	Effective storage volume of water in the trial pit between 75% and 25% effective depth	m^3
a _{s50}	Internal surface area of the trial pit up to 50% effective depth and including the base area	m^2
t _{p75-25}	Time for the water level to fall from 75% to 25% effective depth	seconds
d _{eff}	Effective depth	m
d _{eff75-25}	Depth between 75% and 25% of the effective depth	m
a _{base}	Trial pit base area	m^2

Test	Test 1
$d_{eff} =$	1.00 m
$0.75 d_{\rm eff} =$	0.75 m
$0.25 d_{\rm eff} =$	0.25 m
$d_{eff75-25} =$	0.50 m
a _{base} =	1.50 m
V _{p75-25} =	0.75 m
a _{s50} =	5.00 m

To calculate $t_{\text{p75-25},\text{}}$ use the Depth v Time graphs and draw on a linear line of best fit.

Then work out the time it takes for the water level to drop by $d_{\text{eff75-25}}$

Enter the time (in minutes) below:

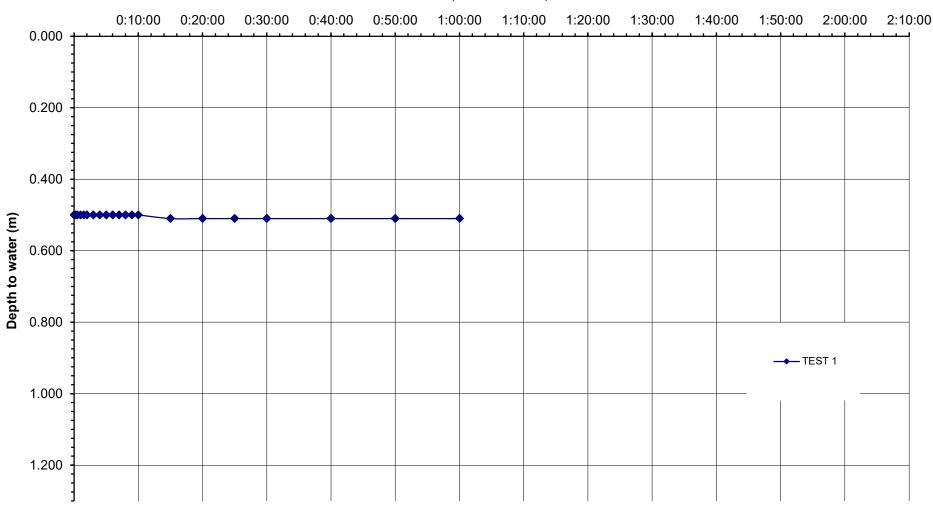

Total fall: 0.02 m

$$\begin{array}{ll} \text{((d}_{\text{eff}}\text{ - Total} \\ \text{fall) / d}_{\text{eff}}\text{) x} & 98.0\% \\ & 100\% \end{array}$$

SOAKAWAY TEST - DATA SHEET

Job Name	Rosefield		Job Number	2372536	
Trial Pit Numbe	rs:	TP014	Test Numbers	1	07/11/2-24

Test 1		Test 2	Test 3	
Trial Pit Dim	nensions	Trial Pit Dimensions	Trial Pit Dimensions	Trial Pit Dimensions
Length:	2.85 m	Length:	Length:	Length:
Width:	0.90 m	Width:	Width:	Width:
Depth:	1.50 m	Depth:	Depth:	Depth:
Effective De	epth: 1.00 m	Effective Depth:	Effective Depth:	Effective Depth:


Test Data Test Data Test Data Test Data

Time	Depth	Time	Depth	Time	Depth	Time	Depth
(hh:mm:ss)	(mbgl)	(hh:mm:ss)	(mbgl)	(hh:mm:ss)	(mbgl)	(hh:mm:ss)	(mbgl)
0:00:00	0.500	0:00:00		0:00:00		0:00:00	
0:00:15	0.500	0:00:15		0:00:15		0:00:15	
0:00:30	0.500	0:00:30		0:00:30		0:00:30	
0:01:00	0.500	0:01:00		0:01:00		0:01:00	
0:01:30	0.500	0:01:30		0:01:30		0:01:30	
0:02:00	0.500	0:02:00		0:02:00		0:02:00	
0:03:00	0.500	0:03:00		0:03:00		0:03:00	
0:04:00	0.500	0:04:00		0:04:00		0:04:00	
0:05:00	0.500	0:05:00		0:05:00		0:05:00	
0:06:00	0.500	0:06:00		0:06:00		0:06:00	
0:07:00	0.500	0:07:00		0:07:00		0:07:00	
0:08:00	0.500	0:08:00		0:08:00		0:08:00	
0:09:00	0.500	0:09:00		0:09:00		0:09:00	
0:10:00	0.500	0:10:00		0:10:00		0:10:00	
0:15:00	0.510	0:15:00		0:15:00		0:15:00	
0:20:00	0.510	0:20:00		0:20:00		0:20:00	
0:25:00	0.510	0:25:00		0:25:00		0:25:00	
0:30:00	0.510	0:30:00		0:30:00		0:30:00	
0:40:00	0.510	0:40:00		0:40:00		0:40:00	
0:50:00	0.510	0:50:00		0:50:00		0:50:00	
1:00:00	0.510	1:00:00		1:00:00		1:00:00	
1:30:00		1:30:00		1:30:00		1:30:00	
2:00:00		2:00:00		2:00:00		2:00:00	
3:00:00		3:00:00		3:00:00		3:00:00	
4:00:00		4:00:00		4:00:00		4:00:00	
5:00:00		5:00:00		5:00:00		5:00:00	
6:00:00		6:00:00		6:00:00		6:00:00	
7:00:00		7:00:00		7:00:00		7:00:00	
8:00:00		8:00:00		8:00:00		8:00:00	

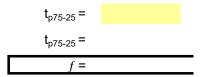
Soakaway Test

Time (hrs:mins:secs)

SOAKAWAY TEST - CALCULATION SHEET

Position:

Nomenclature:


Symbol:	Function:	Units:
f	Soil Infiltration Rate	m/s
V _{p75-25}	Effective storage volume of water in the trial pit between 75% and 25% effective depth	m^3
a _{s50}	Internal surface area of the trial pit up to 50% effective depth and including the base area	m^2
t _{p75-25}	Time for the water level to fall from 75% to 25% effective depth	seconds
d _{eff}	Effective depth	m
d _{eff75-25}	Depth between 75% and 25% of the effective depth	m
a _{base}	Trial pit base area	m^2

Test	Test 1
$d_{eff} =$	1.00 m
$0.75 d_{eff} =$	0.75 m
$0.25 d_{\rm eff} =$	0.25 m
$d_{eff75-25} =$	0.50 m
a _{base} =	2.57 m
$V_{p75-25} =$	1.28 m
a _{s50} =	6.32 m

To calculate $t_{\text{p75-25},\text{}}$ use the Depth v Time graphs and draw on a linear line of best fit.

Then work out the time it takes for the water level to drop by $d_{\text{eff75-25}}$

Enter the time (in minutes) below:

Total fall: -0.50 m

 $\begin{array}{c} \text{((d}_{\text{eff}}\text{ - Total} \\ \text{fall) / d}_{\text{eff}}\text{) x} & 150.0\% \\ & 100\% \end{array}$

Appendix E Geotechnical Laboratory Testing Results

Unit 4, Faraday Close, Pattinson North Industrial Estate, Washington, NE38 8QJ Tel: 0191 482 8500 washington@ianfarmer.co.uk www.ianfarmer.co.uk

Central Alliance Alliance House South Park Way Wakefield WF2 0XJ

F.A.O.

Final Test Report - 2282314 / 1

Site: Rosefield Solar Farm

Job Number: 2282314

Originating Client: EDF

Originating Reference: 2372536

Date Sampled: Not Given

Date Scheduled: 05/12/2024

Date Testing Started: 06/12/2024

Date Testing Finished: 07/01/2025

Previous Reports	Amendments	Date Issued

Amendments:

Authorised By:

Quality Supervisor

Report Issue Date: 07/01/2025

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 2

Determination of Water Content, Liquid Limit and Plastic Limit and Derivation of Plasticity and Liquidity Index

				un	<u> </u>	vatio		iastic	ity ai	14 -14	ululty	IIIGCA		
				Sample Pr Natural = I		ed							t PI Only	
Borehole / Trial Pit	Depth (m)	Sample	Natural Water	Sieved = V			Liquid Limit %	Plastic Limit %	Plasticity Index %	Liquidity Index	Class	ne ation n)	ction	Description / Remarks
Fit			Content %	Natural / Sieved	Passing %	Calc. WC %	Littiit 76	Littiit 76	muex /8	ilidex		Cone Penetration (mm)	Correction Factor	
HP(C)007	1.40	D4	19.3	Sieved	93	21	30	16	14	0.33	CL			Brown gravelly, sandy, silty CLAY
HP(C)010	1.00	D6	14.6	Sieved	52	28	45	19	26	0.34	CI			Brown gravelly, silty CLAY
HP(HR)004	0.50	D5	45.2	Natural	97	47	85	47	38	-0.01	MV			Brown clayey SILT
HP(HR)005	0.50	D5	21.3	Natural	69	31	58	23	35	0.22	СН			Brown gravelly, silty CLAY
HP(HR)006	0.50	D5	28.5	Natural	100	29	70	26	44	0.06	CH/CVO			Brown sandy, silty CLAY
HP(HR)007	0.50	D5	46.3	Natural	97	48	91	41	50	0.13	ME			Brown clayey SILT
HP007	0.40	D2	36.1	Natural	100	36	65	32	33	0.12	СН			Brown silty CLAY
HP008	1.30	D5	23.6	Natural	100	24	61	22	39	0.04	СН	20.1 20.1	0.999	Brown silty CLAY
HP012	1.30	D5	24.2	Natural	100	24	53	21	32	0.10	СН			Brown silty CLAY
HP019	1.40	D4	24.6	Natural	100	25	57	23	34	0.05	СН			Brown silty CLAY
HP020	0.90	D3	24.5	Natural	100	25	56	23	33	0.05	СН			Brown silty CLAY
HP021	1.40	D3	20.8	Natural	100	21	55	23	32	-0.07	СН			Brown silty CLAY
HP022	1.20	D3	30.2	Natural	100	30	67	26	41	0.10	СН			Brown silty CLAY
HP024	0.75	D5	24.3	Natural	100	24	65	22	43	0.05	СН			Brown sandy, silty CLAY
HP025	0.85	D4	18.9	Sieved	73	26	73	30	43	-0.10	CV			Btown gravelly, sandy, silty CLAY
HP025	1.40	D6	26.5	Natural	100	27	62	26	36	0.01	СН			Brown silty CLAY
HP026	1.50	D6	27.5	Natural	100	28	51	25	26	0.10	СН			Brown silty CLAY
HP027	1.50	D6	31.3	Natural	100	31	67	35	32	-0.12	МН	20.3 20.4	0.994	Brown sandy CLAY/SILT
TP(C)001	0.70	D3	40.5	Natural	100	41	77	37	40	0.09	MV			Brown SILT/CLAY
TP(C)001	1.90	D7	39.8	Natural	100	40	45	20	25	0.79	CI			Brown slightly gravelly, sandy, silty CLAY
TP(C)001	2.90	D9	23.9	Natural	100	24	61	28	33	-0.12	СН			Brown silty CLAY
TP(C)011	0.80	D3	26.9	Natural	100	27	67	26	41	0.02	СН			Brown silty CLAY
TP(C)011	1.90	D5	21.6	Sieved	94	23	48	22	26	0.04	CI			Brown silty CLAY
TP002	0.80	D3	33.5	Natural	100	34	82	30	52	0.07	CV			Brown silty CLAY

Method of Preparation: BS EN ISO 17892-1 : 2014 + A1 : 2022 : Clause 5.1 Water content test preparation

BS EN ISO 17892-12 : 2018 + A2 : 2022 : Clause 5.2 Specimen preparation for liquid and plastic limits

Method of Test: BS EN ISO 17892-1: 2014 + A1: 2022: Clause 5.2 Water content test execution

BS EN ISO 17892-12: 2018 + A2: 2022: Clause 5.3 Determination of liquid limit by the fall cone method. 80g / 30° Cone

BS EN ISO 17892-12 : 2018 + A2 : 2022 : Clause 5.5 Determination of plastic limit

General Remarks: All samples tested with increasing water content, unless otherwise stated.

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 3

Determination of Water Content, Liquid Limit and Plastic Limit and Derivation of Plasticity and Liquidity Index

	and Derivation of Plasticity and Liquidity Index													
Borehole / Trial Pit	Depth (m)	Sample	Natural Water Content %	Natural =	reparation Hand picke Washed or	ed	Liquid Limit %	Plastic Limit %	Plasticity Index %	Liquidity Index	Class	Cone Penetration (mm)	Correction Id and Id Alberton Color	Description / Remarks
TDOOR	4.00	D7		Sieved	%	%		0.7	00	0.40	CLI	Pene	Con	Brown slightly gravelly, silty, sandy
TP002	1.90	D7	31.9	Natural	100	32	55	27	28	0.18	СН			CLAY
TP003	0.80	D3	34.7	Natural	100	35	87	33	54	0.03	CV			Brown silty CLAY
TP014	0.80	D3	26.9	Natural	100	27	64	25	39	0.05	СН			Brown silty CLAY
TP014	1.80	D7	22.2	Natural	100	22	49	21	28	0.04	CI			Brown silty CLAY
WS013	2.80	D10	34.9	Natural	100	35	57	27	30	0.26	СН			Brown silty CLAY
WS013	4.80	D14	34.5	Natural	100	35	60	31	29	0.12	СН			Brown slightly gravelly, silty CLAY
WS015	3.60	D12	22.9	Sieved	98	23	31	19	12	0.37	CL			Brown silty, sandy CLAY
WS017	3.80	D12	23.3	Natural	100	23	45	20	25	0.13	CI			Brown silty CLAY
WS018	2.80	D9	18.6	Natural	100	19	51	20	31	-0.05	СН			Brown slightly gravelly, silty CLAY

Method of Preparation: BS EN ISO 17892-1 : 2014 + A1 : 2022 : Clause 5.1 Water content test preparation

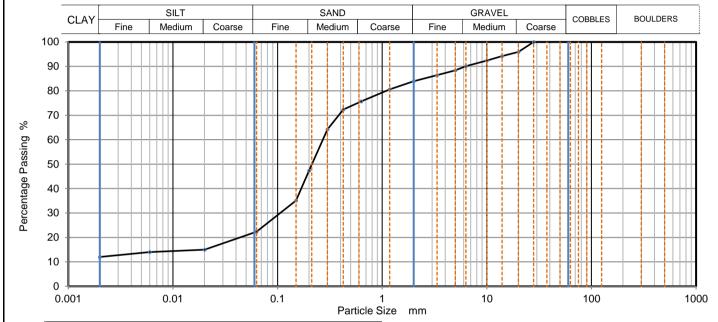
 $BS\ EN\ ISO\ 17892-12: 2018+A2: 2022: Clause\ 5.2\ Specimen\ preparation\ for\ liquid\ and\ plastic\ limits$

Method of Test: BS EN ISO 17892-1: 2014 + A1: 2022: Clause 5.2 Water content test execution

BS EN ISO 17892-12: 2018 + A2: 2022: Clause 5.3 Determination of liquid limit by the fall cone method. 80g / 30° Cone

BS EN ISO 17892-12 : 2018 + A2 : 2022 : Clause 5.5 Determination of plastic limit

General Remarks: All samples tested with increasing water content, unless otherwise stated.


2282314 / 1

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 4

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Testing Type	Description
HP(C)007	0.90	В3	Wet Sieve + Pipette	Brown gravelly, silty, clayey SAND

Sie	ving	Sedimentation					
Particle Size mm	% Passing	Particle Size mm	% Passing				
		0.0201	15				
		0.0060	14				
		0.0020	12				
28	100						
20	96						
14	94						
10	92						
6.3	90						
5	88						
3.35	86						
2	84	Particle density	(assumed)				
1.18	81	2.65	Mg/m3				
0.63	76		<u> </u>				
0.425	72						
0.3	64						
0.2	47						
0.15	35						
0.063	22						

Dry Mass of sample, g	2225
-----------------------	------

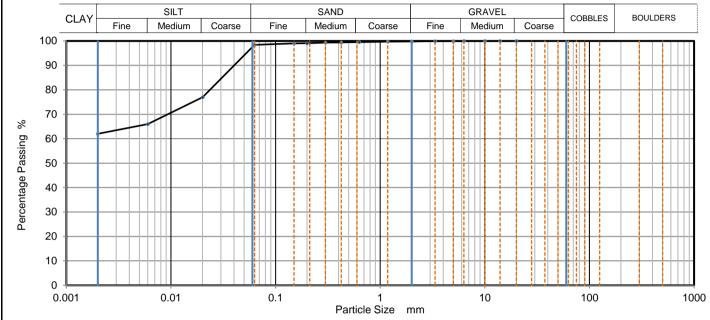
Sample Proportions	% dry mass
Very coarse	0
Gravel	16
Sand	62
Silt	10
Clay	12

Grading Analysis		
D100	mm	28
D60	mm	0.271
D30	mm	0.106
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Method of Preparation: BS EN 17892:Part4:2016, clause 5.2.2 Preparation of samples for wet sieving test BS EN 17892:Part4:2016, clause 5.4.2 Preparation of samples for pipette test


2282314 / 1

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 5

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Testing Type	Description
HP(C)010	1.00	B4	Wet Sieve + Pipette	Brown silty CLAY

Siev	ving	Sedimo	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
		0.0201	77
		0.0060	66
		0.0020	62
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100	Particle density	(assumed)
1.18	100	2.65	Mg/m3
0.63	100		
0.425	99		
0.3	99		
0.2	99		
0.15	99		
0.063	98		

Dry Mass of sample, g	1014	
-----------------------	------	--

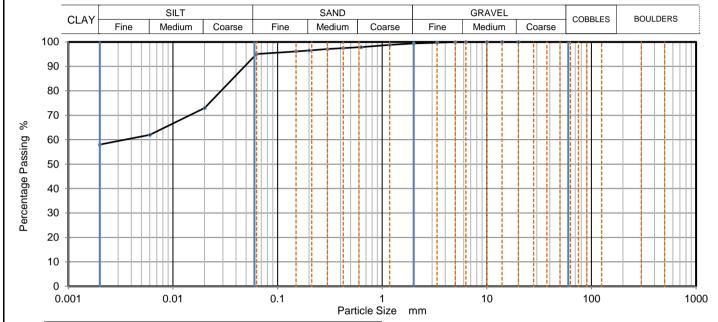
Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	1
Silt	36
Clay	62

Grading Analysis		
D100	mm	6.3
D60	mm	
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Method of Preparation: BS EN 17892:Part4:2016, clause 5.2.2 Preparation of samples for wet sieving test BS EN 17892:Part4:2016, clause 5.4.2 Preparation of samples for pipette test


2282314 / 1

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 6

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Testing Type	Description
HP008	0.70	B4	Wet Sieve + Pipette	Brown silty CLAY

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
		0.0201	73
		0.0060	62
		0.0020	58
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	99	Particle density	(assumed)
1.18	99	2.65	Mg/m3
0.63	98		
0.425	98		
0.3	97		
0.2	97		
0.15	96		
0.063	95		

Dry Mass of sample, g	544
Dry Mass of sample, g	544

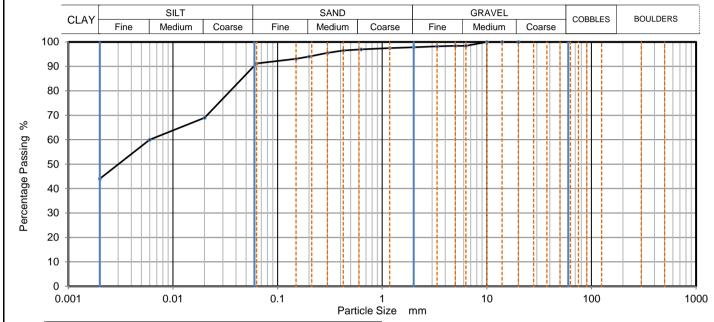
Sample Proportions	% dry mass
Very coarse	0
Gravel	1
Sand	4
Silt	37
Clay	58

Grading Analysis		
D100	mm	6.3
D60	mm	0.00343
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Method of Preparation: BS EN 17892:Part4:2016, clause 5.2.2 Preparation of samples for wet sieving test BS EN 17892:Part4:2016, clause 5.4.2 Preparation of samples for pipette test


2282314 / 1

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 7

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Testing Type	Description
HP012	0.70	B4	Wet Sieve + Pipette	Brown, slightly sandy, silty CLAY

Sie	ving	Sedimo	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing		
		0.0201	69		
		0.0060	60		
		0.0020	44		
20	100				
14	100				
10	100				
6.3	98				
5	98				
3.35	98				
2	98	Particle density	(assumed)		
1.18	98	2.65	Mg/m3		
0.63	97				
0.425	97				
0.3	96				
0.2	94				
0.15	93				
0.063	91	1			

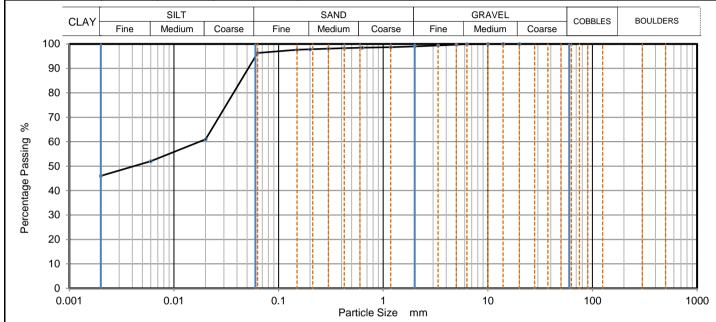
Sample Proportions	% dry mass	
Very coarse	0	
Gravel	2	
Sand	7	
Silt	47	
Clay	44	

Grading Analysis				
D100	mm	10		
D60	mm	0.00637		
D30	mm			
D10	mm			
Uniformity Coefficient				
Curvature Coefficient				

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Method of Preparation: BS EN 17892:Part4:2016, clause 5.2.2 Preparation of samples for wet sieving test BS EN 17892:Part4:2016, clause 5.4.2 Preparation of samples for pipette test


2282314 / 1

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 8

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Testing Type	Description
HP019	1.20	В3	Wet Sieve + Pipette	Brown silty CLAY

Sie	ving	Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assiriy	mm	70 1 assiriy
		0.0201	61
		0.0060	52
		0.0020	46
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	99		
2	99	Particle density	(assumed)
1.18	99	2.65	Mg/m3
0.63	99		_
0.425	98		
0.3	98		
0.2	98		
0.15	98		
0.063	96		

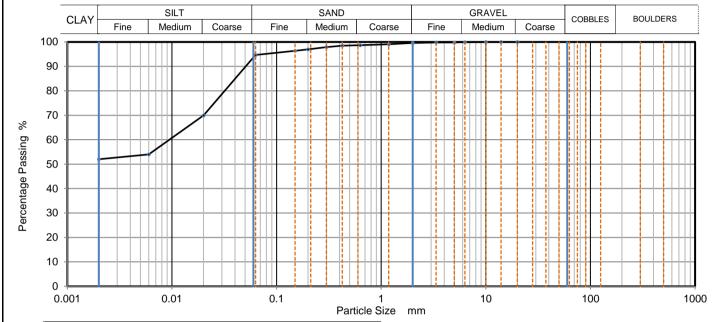
Sample Proportions	% dry mass	
Very coarse	0	
Gravel	1	
Sand	3	
Silt	51	
Clay	46	

Grading Analysis		
D100	mm	10
D60	mm	0.0165
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Method of Preparation: BS EN 17892:Part4:2016, clause 5.2.2 Preparation of samples for wet sieving test BS EN 17892:Part4:2016, clause 5.4.2 Preparation of samples for pipette test


2282314 / 1

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 9

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Testing Type	Description
HP022	0.60	B2	Wet Sieve + Pipette	Brown slightly sandy, silty CLAY

Sie	ving	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
		0.0201	70	
		0.0060	54	
		0.0020	52	
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100	Particle density	` '	
1.18	99	2.65	Mg/m3	
0.63	99		·	
0.425	99			
0.3	98			
0.2	97			
0.15	96			
0.063	95			

Dry Mass of sample, g 597	Dry Mass of sample, g	597
---------------------------	-----------------------	-----

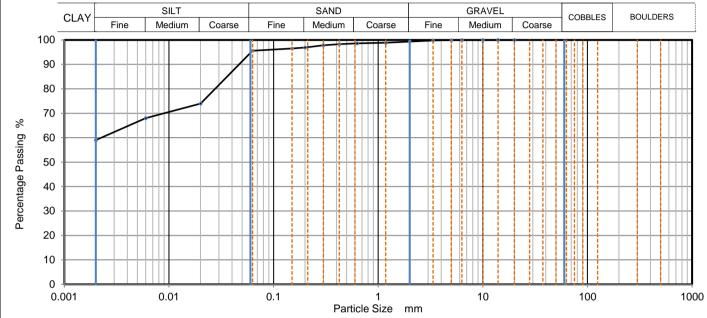
Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	5
Silt	42
Clay	52

Grading Analysis		
D100	mm	10
D60	mm	0.00925
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Method of Preparation: BS EN 17892:Part4:2016, clause 5.2.2 Preparation of samples for wet sieving test BS EN 17892:Part4:2016, clause 5.4.2 Preparation of samples for pipette test


2282314 / 1

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 10

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Testing Type	Description
HP024	1.00	B4	Wet Sieve + Pipette	Brown silty CLAY

Sie	ving	Sedime	Sedimentation		
Particle Size	% Passing	Particle Size	% Passing		
mm	70 T assiriy	mm	ů		
		0.0201	74		
		0.0060	68		
		0.0020	59		
20	100				
14	100				
10	100				
6.3	100				
5	100				
3.35	100				
2	99	Particle density	(assumed)		
1.18	99	2.65	Mg/m3		
0.63	99		-		
0.425	98				
0.3	98				
0.2	97				
0.15	97				
0.063	96				

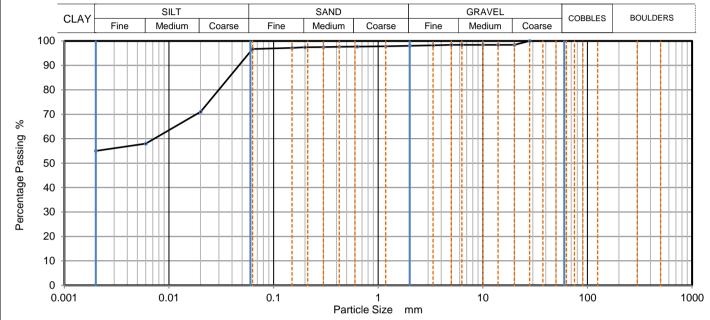
Sample Proportions	% dry mass	
Very coarse	0	
Gravel	1	
Sand	4	
Silt	36	
Clay	59	

Grading Analysis		
D100	mm	6.3
D60	mm	0.00218
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Method of Preparation: BS EN 17892:Part4:2016, clause 5.2.2 Preparation of samples for wet sieving test BS EN 17892:Part4:2016, clause 5.4.2 Preparation of samples for pipette test


2282314 / 1

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 11

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Testing Type	Description
HP027	1.00	B4	Wet Sieve + Pipette	Brown silty CLAY

Sie	ving	Sedimentation		
Particle Size	% Passing	Particle Size	% Passing	
mm		mm		
		0.0201	71	
		0.0060	58	
		0.0020	55	
28	100			
20	98			
14	98			
10	98			
6.3	98			
5	98			
3.35	98			
2	98	Particle density	(assumed)	
1.18	98	2.65	Mg/m3	
0.63	98			
0.425	98			
0.3	98	1		
0.2	97	1		
0.15	97			
0.063	97	1		

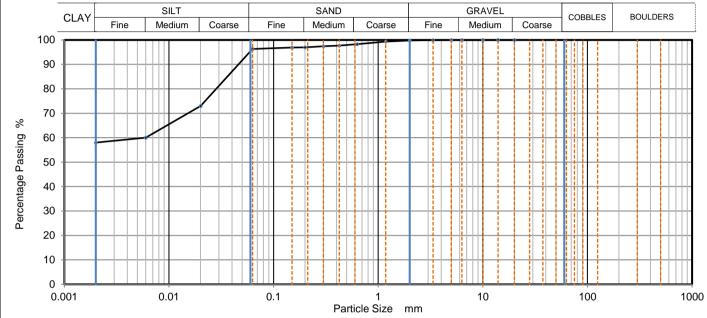
Sample Proportions	% dry mass
Very coarse	0
Gravel	2
Sand	1
Silt	42
Clay	55

Grading Analysis		
D100	mm	28
D60	mm	0.00748
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Method of Preparation: BS EN 17892:Part4:2016, clause 5.2.2 Preparation of samples for wet sieving test BS EN 17892:Part4:2016, clause 5.4.2 Preparation of samples for pipette test


2282314 / 1

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 12

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Testing Type	Description
TP(C)001	1.30	B6	Wet Sieve + Pipette	Brown silty CLAY

Sie	ving	Sedime	Sedimentation		
Particle Size	% Passing	Particle Size	% Passing		
mm	70 T 000111g	mm	ů		
		0.0201	73		
		0.0060	60		
		0.0020	58		
20	100				
14	100				
10	100				
6.3	100				
5	100				
3.35	100				
2	100	Particle density	(assumed)		
1.18	99	2.65	Mg/m3		
0.63	98		<u> </u>		
0.425	98				
0.3	97				
0.2	97				
0.15	97				
0.063	96				

Dry Mass of sample, g	633
-----------------------	-----

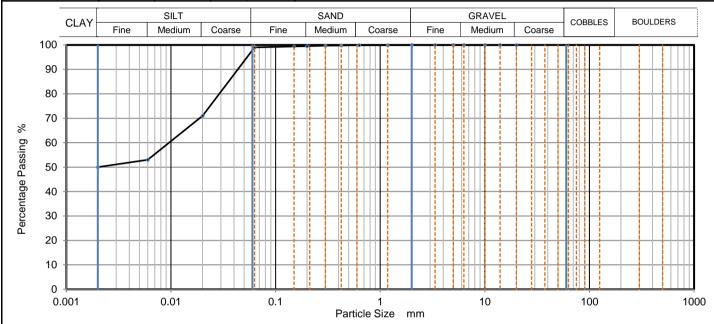
Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	4
Silt	38
Clay	58

Grading Analysis		
D100	mm	5
D60	mm	0.00603
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Method of Preparation: BS EN 17892:Part4:2016, clause 5.2.2 Preparation of samples for wet sieving test BS EN 17892:Part4:2016, clause 5.4.2 Preparation of samples for pipette test


2282314 / 1

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 13

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Daniel ele /				
Borehole / Trial Pit	Depth (m)	Sample	Testing Type	Description
TP(C)011	1.30	B4	Wet Sieve + Pipette	Brown silty CLAY

Siev	ving	Sedimo	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
		0.0201	71
		0.0060	53
		0.0020	50
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100	Particle density	(assumed)
1.18	100	2.65	Mg/m3
0.63	100		<u> </u>
0.425	100		
0.3	100		
0.2	100		
0.15	99		
0.063	99		

Dry Mass of sample, g	668

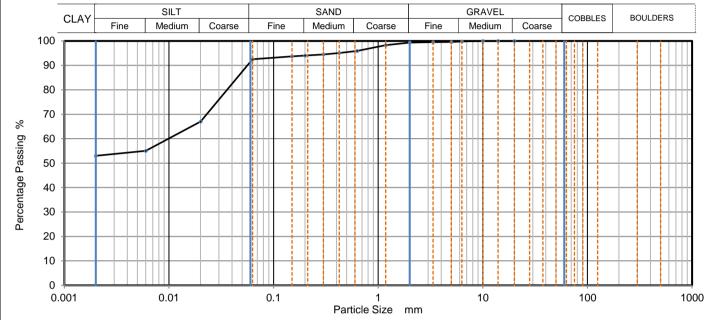
Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	1
Silt	49
Clay	50

Grading Analysis		
D100	mm	3.35
D60	mm	0.0093
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Method of Preparation: BS EN 17892:Part4:2016, clause 5.2.2 Preparation of samples for wet sieving test BS EN 17892:Part4:2016, clause 5.4.2 Preparation of samples for pipette test


2282314 / 1

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 14

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Testing Type	Description
TP(C)011	2.30	В6	Wet Sieve + Pipette	Brown slightly sandy, silty CLAY

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
		0.0201	67
		0.0060	55
		0.0020	53
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	99	Particle density	(assumed)
1.18	98	2.65	Mg/m3
0.63	96		
0.425	95		
0.3	95		
0.2	94		
0.15	94		
0.063	93		

605

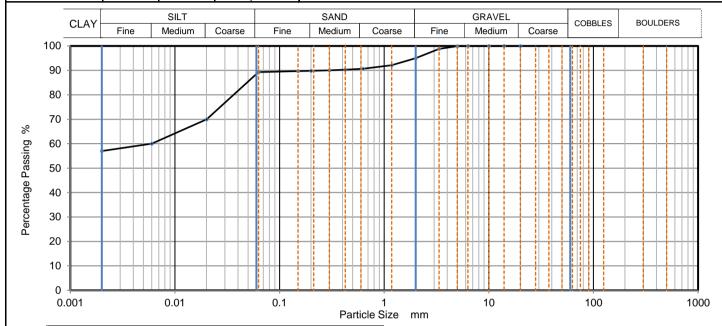
Sample Proportions	% dry mass
Very coarse	0
Gravel	1
Sand	7
Silt	39
Clay	53

Grading Analysis		
D100	mm	10
D60	mm	0.0101
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Method of Preparation: BS EN 17892:Part4:2016, clause 5.2.2 Preparation of samples for wet sieving test BS EN 17892:Part4:2016, clause 5.4.2 Preparation of samples for pipette test


2282314 / 1

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 15

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Testing Type	Description
TP002	1.60	В6	Wet Sieve + Pipette	Brown slightly sandy, silty CLAY

Sie	ving	Sedimo	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing		
		0.0201	70		
		0.0060	60		
		0.0020	57		
20	100				
14	100				
10	100				
6.3	100				
5	100				
3.35	99				
2	95	Particle density	(assumed)		
1.18	92	2.65	Mg/m3		
0.63	91				
0.425	90				
0.3	90				
0.2	90				
0.15	90				
0.063	89	1			

Dry Mass of sample, g	810
Dry Mass of Sample, g	010

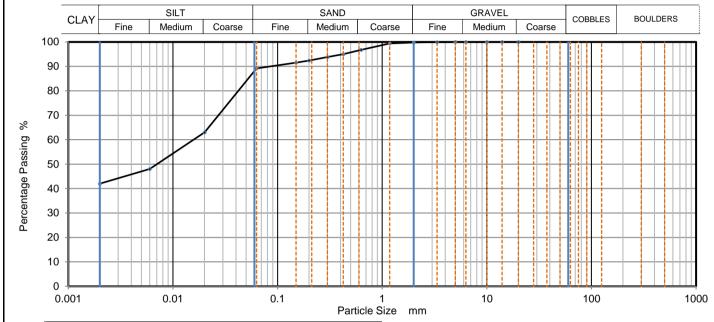
Sample Proportions	% dry mass
Very coarse	0
Gravel	5
Sand	6
Silt	32
Clay	57

Grading Analysis		
D100	mm	6.3
D60	mm	0.00513
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Method of Preparation: BS EN 17892:Part4:2016, clause 5.2.2 Preparation of samples for wet sieving test BS EN 17892:Part4:2016, clause 5.4.2 Preparation of samples for pipette test


2282314 / 1

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 16

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Testing Type	Description
TP003	1.30	B4	Wet Sieve + Pipette	Brown sandy, silty CLAY

Siev	ving	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
		0.0201	63	
		0.0060	48	
		0.0020	42	
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100	Particle density	(assumed)	
1.18	99	2.65	Mg/m3	
0.63	97			
0.425	95			
0.3	94			
0.2	92			
0.15	92			
0.063	89			

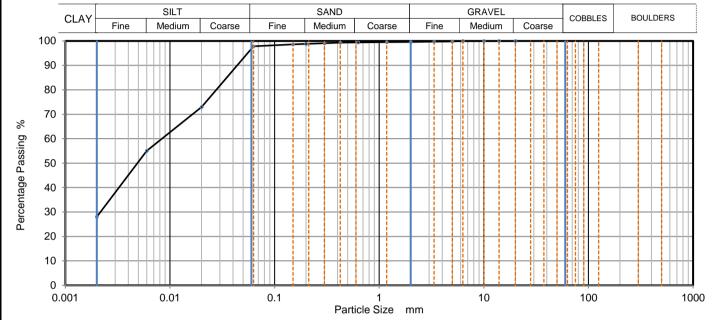
Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	11
Silt	47
Clay	42

Grading Analysis		
D100	mm	6.3
D60	mm	0.0161
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Method of Preparation: BS EN 17892:Part4:2016, clause 5.2.2 Preparation of samples for wet sieving test BS EN 17892:Part4:2016, clause 5.4.2 Preparation of samples for pipette test


2282314 / 1

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 17

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

F	Borehole / Trial Pit	Depth (m)	Sample	Testing Type	Description
	TP014	1.30	В6	Wet Sieve + Pipette	Brown clayey SILT

Sie	ving	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
		0.0201	73	
		0.0060	55	
		0.0020	28	
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100	Particle density	(assumed)	
1.18	100	2.65	Mg/m3	
0.63	99			
0.425	99			
0.3	99			
0.2	99			
0.15	99			
0.063	98			

Dry Mass of sample, g 930	Dry Mass of sample, g	930
---------------------------	-----------------------	-----

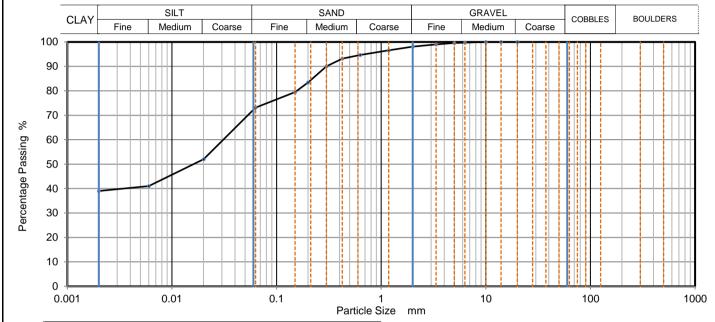
Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	2
Silt	70
Clay	28

Grading Analysis		
D100	mm	6.3
D60	mm	0.0084
D30	mm	0.00216
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Method of Preparation: BS EN 17892:Part4:2016, clause 5.2.2 Preparation of samples for wet sieving test BS EN 17892:Part4:2016, clause 5.4.2 Preparation of samples for pipette test


2282314 / 1

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 18

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Testing Type	Description
WS016	3.00	B13	Wet Sieve + Pipette	Brown sandy, silty CLAY

Sie	ving	Sedimo	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing		
		0.0201	52		
		0.0060	41		
		0.0020	39		
20	100				
14	100				
10	100				
6.3	100				
5	100				
3.35	99				
2	98	Particle density	(assumed)		
1.18	97	2.65	Mg/m3		
0.63	95				
0.425	93				
0.3	90				
0.2	83	1			
0.15	80	1			
0.063	73	1			

Dry Mass of sample, g	530

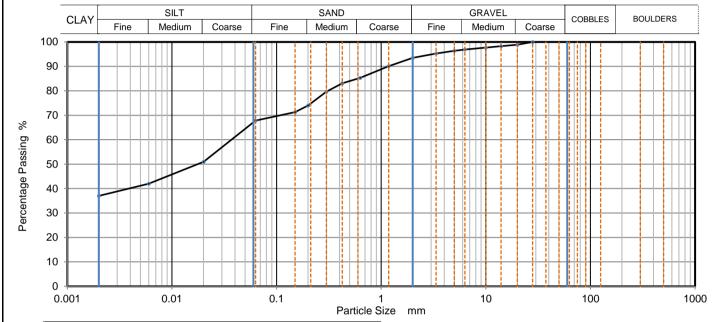
Sample Proportions	% dry mass	
Very coarse	0	
Gravel	2	
Sand	25	
Silt	34	
Clay	39	

Grading Analysis		
D100	mm	10
D60	mm	0.0307
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Method of Preparation: BS EN 17892:Part4:2016, clause 5.2.2 Preparation of samples for wet sieving test BS EN 17892:Part4:2016, clause 5.4.2 Preparation of samples for pipette test


2282314 / 1

Site: Rosefield Solar Farm Job Number: 2282314

Client: EDF Page: 19

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Testing Type	Description
WS017	3.00	B11	Wet Sieve + Pipette	Brown slightly gravelly, silty, sandy CLAY

Siev	ving	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
		0.0201	51	
		0.0060	42	
		0.0020	37	
28	100			
20	99			
14	98			
10	98			
6.3	97			
5	96			
3.35	95			
2	94	Particle density	(assumed)	
1.18	90	2.65	Mg/m3	
0.63	85			
0.425	83			
0.3	80			
0.2	74			
0.15	71			
0.063	68	1		

Sample Proportions	% dry mass 0		
Very coarse			
Gravel	7		
Sand	26		
Silt	31		
Clay	37		

Grading Analysis		
D100	mm	28
D60	mm	0.0367
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Method of Preparation: BS EN 17892:Part4:2016, clause 5.2.2 Preparation of samples for wet sieving test BS EN 17892:Part4:2016, clause 5.4.2 Preparation of samples for pipette test

Site: Rosefield Solar Farm

Job Number: 2282314

Client: EDF Page: 20

Determination of California Bearing Ratio (CBR)

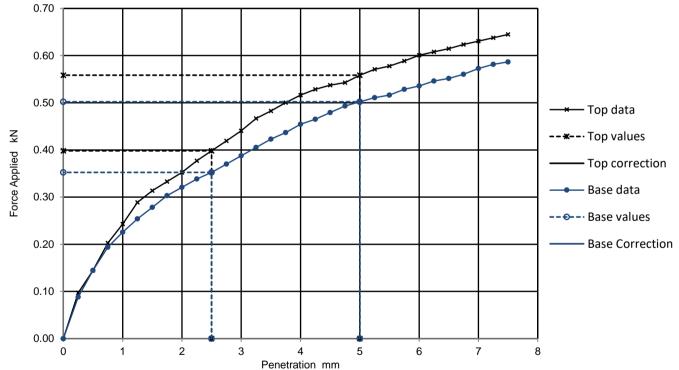
Borehole / Trial Pit	Depth (m)	Sample	% Passing 20mm Sieve	Description
HP(HR)004	0.30	В3	93.40%	Brown gravelly, silty CLAY

Specimen Preparation

Condition Soaking details Not soaked

Details Recompacted with specified standard effort using kg rammer Period of soaking days days

Amount of swell recorded mm


Initial Specimen detailsBulk density2.07Mg/m3Dry density after soakingMg/m3

Dry density 1.75 Mg/m3

Water content 18 % Surcharge applied 4.2 kg

3 kPa

RESULTS

Curve		CBR	Values, %	
correction applied	2.5mm	5mm	Highest	Average
No	3.0	2.8	3.0	2.8
No	2.7	2.5	2.7	2.0

Water Content				
%				
21.5				
20.5				

Approved
Sanaz Sayehvand

Method of Preparation: BS1377: Part 2: 2022, clause 15.2, Recompacted with specified standard effort using kg rammer

Method of Test: BS1377: Part 2: 2022, clause 15.4, Penetration test procedure to determine California Bearing Ratio (CBR)

TOP

Site: Rosefield Solar Farm Job Number: 2282314

Client: **EDF** Page: 21

Determination of California Bearing Ratio (CBR)

Borehole / Trial Pit	Depth (m)	Sample	% Passing 20mm Sieve	Description
HP(HR)004	1.00	B4	100%	Brown silty CLAY

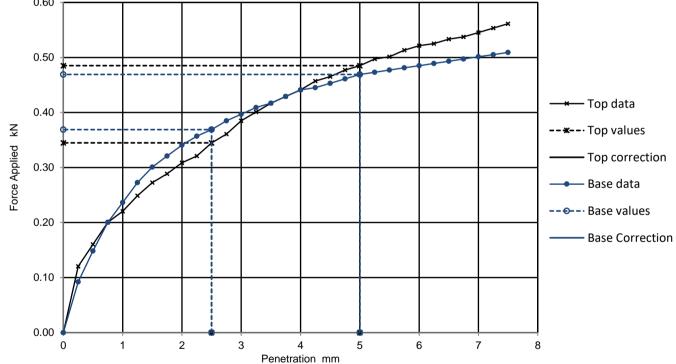
Specimen Preparation

Condition Not soaked Soaking details

Recompacted with specified standard effort using kg Details Period of soaking days rammer Time to surface days

Amount of swell recorded mm

Initial Specimen details Dry density after soaking Bulk density 1.76 Mg/m3 Mg/m3


Force v Penetration Plots

Dry density Mg/m3 1.24

Water content Surcharge applied 4.2 42.3 % kg

kPa

RESULTS

Curve		CBR	Values, %	
correction applied	2.5mm	5mm	Highest	Average
No	2.6	2.4	2.6	2.7
No	2.8	2.3	2.8	2.1

Water Content				
%				
39.9				
41.9				

Approved
Sanaz Sayehvand

Method of Preparation: BS1377: Part 2: 2022, clause 15.2, Recompacted with specified standard effort using kg rammer

Method of Test: BS1377: Part 2: 2022, clause 15.4, Penetration test procedure to determine California Bearing Ratio (CBR)

TOP

Not soaked

days

Site: Rosefield Solar Farm

Job Number: 2282314

Client: EDF Page: 22

Determination of California Bearing Ratio (CBR)

Borehole / Trial Pit	Depth (m)	Sample	% Passing 20mm Sieve	Description
HP(HR)005	0.30	В3	96.70%	Brown sandy, silty CLAY

Specimen Preparation

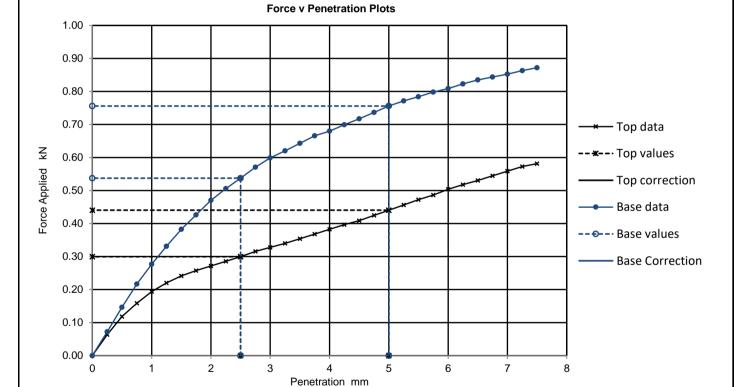
Condition Soaking details

Details Recompacted with specified standard effort using kg Period of soaking

rammer Time to s

Time to surface days

Amount of swell recorded mm


Dry density after soaking Mg/m3

Initial Specimen details Bulk density 1.69 Mg/m3

Dry density 1.20 Mg/m3

Water content 40.6 % Surcha

Surcharge applied 4.2 kg 3 kPa

RESULTS

Curve		CBR	Values, %	
correction applied	2.5mm	5mm	Highest	Average
No	2.3	2.2	2.3	
No	4.1	3.8	4.1	

	Water Content
L	%
	40.7
ĺ	41.7

Approved
Sanaz Sayehvand

Method of Preparation: BS1377: Part 2: 2022, clause 15.2, Recompacted with specified standard effort using kg rammer

Method of Test: BS1377: Part 2: 2022, clause 15.4, Penetration test procedure to determine California Bearing Ratio (CBR)

Remarks:

TOP

BASE

Result reported relates only to the sample tested.

2282314

23

Client:

Site: Rosefield Solar Farm

> Page: **EDF**

Determination of California Bearing Ratio (CBR)

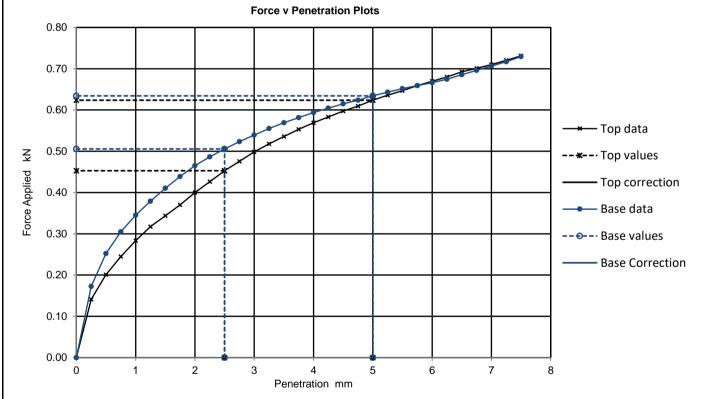
Borehole / Trial Pit	Depth (m)	Sample	% Passing 20mm Sieve	Description
HP(HR)005	1.00	В4	100%	Brown silty CLAY

Specimen Preparation

Condition Not soaked Soaking details

Recompacted with specified standard effort using kg Details Period of soaking days rammer Time to surface days

Amount of swell recorded mm


Job Number:

Initial Specimen details Dry density after soaking Bulk density 1.78 Mg/m3 Mg/m3

> Dry density 1.30 Mg/m3

Water content Surcharge applied 4.2 37.3 % kg

kPa

RESULTS

Curve	CBR Values, %					
correction applied	2.5mm	5mm	Highest	Average		
No	3.4	3.1	3.4	3.6		
No	3.8	3.2	3.8	3.0		

Water Content
%
37.3
36.8

Approved
Sanaz Sayehvand

Method of Preparation: BS1377: Part 2: 2022, clause 15.2, Recompacted with specified standard effort using kg rammer

Method of Test: BS1377: Part 2: 2022, clause 15.4, Penetration test procedure to determine California Bearing Ratio (CBR)

TOP

2282314

Site: Rosefield Solar Farm Job Number: 24

Client: **EDF** Page:

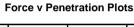
Determination of California Bearing Ratio (CBR)

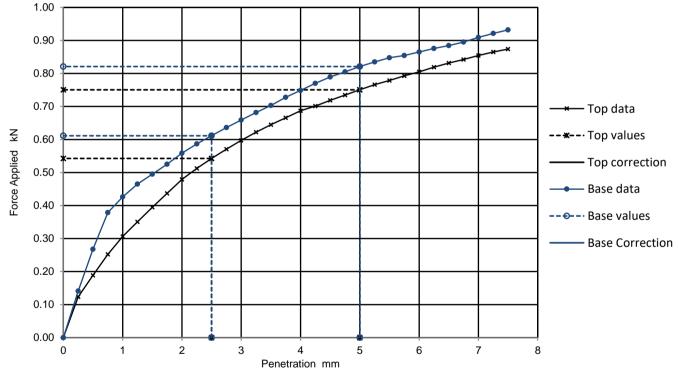
Borehole / Trial Pit	Depth (m)	Sample	% Passing 20mm Sieve	Description
HP(HR)006	0.30	В3	99.10%	Brown silty CLAY

Specimen Preparation

Condition Not soaked Soaking details

Recompacted with specified standard effort using kg Details Period of soaking days rammer Time to surface days


Amount of swell recorded mm


Initial Specimen details Dry density after soaking Bulk density 1.89 Mg/m3 Mg/m3

> Dry density Mg/m3 1.46

Water content Surcharge applied 4.2 29.5 % kg

kPa

RESULTS

Curve	CBR Values, %					
correction applied	2.5mm	5mm	Highest	Average		
No	4.1	3.8	4.1	4.4		
No	4.6	4.1	4.6	4.4		

Approved
Sanaz Sayehvand

Method of Preparation: BS1377: Part 2: 2022, clause 15.2, Recompacted with specified standard effort using kg rammer

Method of Test: BS1377: Part 2: 2022, clause 15.4, Penetration test procedure to determine California Bearing Ratio (CBR)

TOP

2282314

Site: Rosefield Solar Farm

Job Number: 22
Page: 25

Client: EDF Page:

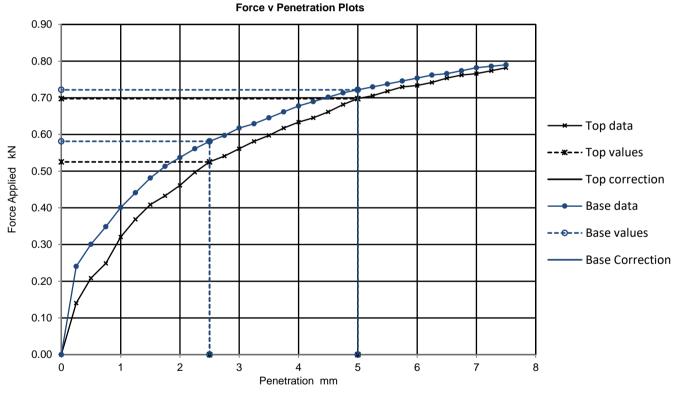
Determination of California Bearing Ratio (CBR)

Borehole / Trial Pit	Depth (m)	Sample	% Passing 20mm Sieve	Description
HP(HR)006	1.00	В4	100%	Brown sandy, silty CLAY

Specimen Preparation

Condition Soaking details Not soaked

Details Recompacted with specified standard effort using kg rammer Period of soaking days days


Time to surface days

Amount of swell recorded mm

Initial Specimen detailsBulk density1.78Mg/m3Dry density after soakingMg/m3

Dry density 1.27 Mg/m3

Water content 40.4 % Surcharge applied 4.2 kg 3 kPa

RESULTS

Curve	CBR Values, %					
correction applied	2.5mm	5mm	Highest	Average		
No	4.0	3.5	4.0	4.2		
No	4.4	3.6	4.4	4.2		

War Cont	
%	· •
36.	.8
36	.2

Approved
Sanaz Sayehvand

Method of Preparation: BS1377: Part 2: 2022, clause 15.2, Recompacted with specified standard effort using kg rammer

Method of Test: BS1377: Part 2: 2022, clause 15.4, Penetration test procedure to determine California Bearing Ratio (CBR)

TOP

Job Number:

2282314

Client:

Site: Rosefield Solar Farm

EDF Page: 26

Determination of California Bearing Ratio (CBR)

İ	Borehole / Trial Pit	Depth (m)	Sample	% Passing 20mm Sieve	Description
	HP(HR)007	0.50	В3	100%	Brown sandy, silty CLAY

Specimen Preparation

Condition Soaking details Not soaked

Details Recompacted with specified standard effort using kg Period of soaking


Details Recompacted with specified standard effort using kg rammer Period of soaking days days

Initial Specimen details Bulk density 1.68 Mg/m3 Dry density after soaking Mg/m3

Dry density 1.17 Mg/m3

Water content 44.2 % Surcharge applied 4.2 kg

3 kPa

RESULTS Cu corre

TOP

BASE

Curve	CBR Values, %					
correction applied	2.5mm	5mm	Highest	Average		
No	3.7	3.2	3.7			
No	2.8	2.9	2.9			

Water Content
%
44.5
44.5

Approved
Sanaz Sayehvand

Method of Preparation: BS1377: Part 2: 2022, clause 15.2, Recompacted with specified standard effort using kg rammer

Method of Test: BS1377: Part 2: 2022, clause 15.4, Penetration test procedure to determine California Bearing Ratio (CBR)

Site: Rosefield Solar Farm Job Number: 2282314

Client: **EDF** Page: 27

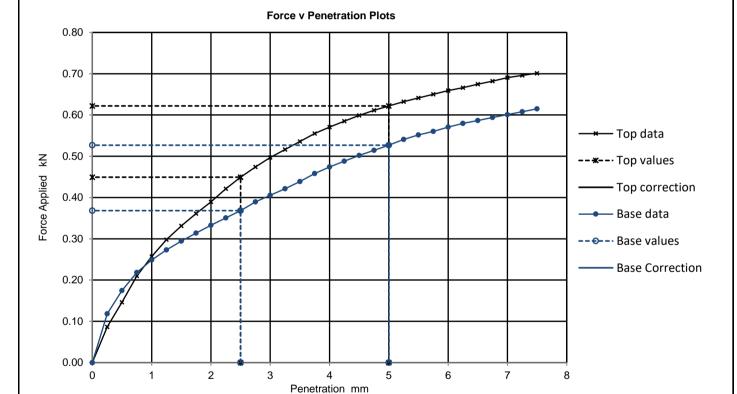
Determination of California Bearing Ratio (CBR)

Borehole / Trial Pit	Depth (m)	Sample	% Passing 20mm Sieve	Description
HP021	0.50	B2	100%	Brown sandy, silty CLAY

Specimen Preparation

Condition Soaking details Recompacted with specified standard effort using kg Details

Period of soaking days rammer Time to surface days


Amount of swell recorded mm Initial Specimen details Dry density after soaking Bulk density 1.80 Mg/m3 Mg/m3

> Dry density 1.36 Mg/m3

Water content Surcharge applied 4.2 32.2 % kg

kPa

Not soaked

RESULTS

Curve	CBR Values, %					
correction applied	2.5mm	5mm	Highest	Average		
No	3.4	3.1	3.4	3.1		
No	2.8	2.6	2.8	3.1		

Water Content
%
32.4
35.3

Approved
Sanaz Sayehvand

Method of Preparation: BS1377: Part 2: 2022, clause 15.2, Recompacted with specified standard effort using kg rammer

Method of Test: BS1377: Part 2: 2022, clause 15.4, Penetration test procedure to determine California Bearing Ratio (CBR)

TOP

Site: Rosefield Solar Farm Job Number: 2282314

Client: Page: **EDF** 28

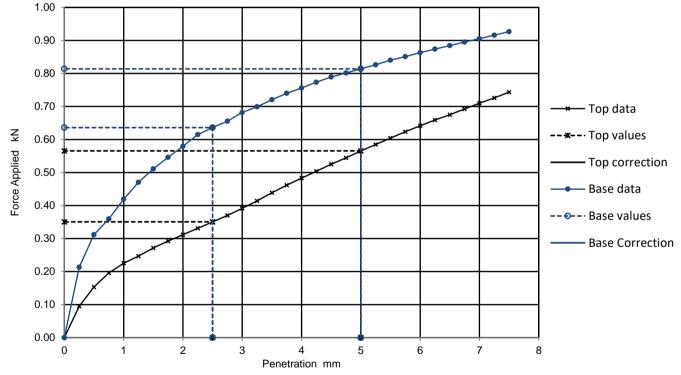
Determination of California Bearing Ratio (CBR)

Borehole / Trial Pit	Depth (m)	Sample	% Passing 20mm Sieve	Under the Description	
HP025	0.50	B2	100%	Brown sandy, gravelly, silty CLAY	

Specimen Preparation

Condition Not soaked Soaking details

Recompacted with specified standard effort using kg Details Period of soaking days rammer Time to surface days


Amount of swell recorded mm Initial Specimen details Bulk density Dry density after soaking 1.91 Mg/m3 Mg/m3

Dry density Mg/m3 1.51

Water content Surcharge applied 4.2 26.6 % kg

kPa

RESULTS

Ī	Curve	CBR Values, %					
	correction applied	2.5mm	5mm	Highest	Average		
	No	2.7	2.8	2.8			
	No	4.8	4.1	4.8			

Water Content
%
27.7
28.1

Approved
Sanaz Sayehvand

Method of Preparation: BS1377: Part 2: 2022, clause 15.2, Recompacted with specified standard effort using kg rammer

Method of Test: BS1377: Part 2: 2022, clause 15.4, Penetration test procedure to determine California Bearing Ratio (CBR)

TOP

Site: Rosefield Solar Farm

Job Number: 2282314

Client: EDF Page: 29

Determination of California Bearing Ratio (CBR)

Borehole / Trial Pit	Depth (m)	Sample	% Passing 20mm Sieve	Description
TP(C)001	0.20	B2	100%	Brown sandy, silty CLAY

Specimen Preparation

Initial Specimen details

Condition

Details Recompacted with specified standard effort using kg

rammer

Soaking details
Period of soaking
Time to surface

Dry density after soaking

Not soaked days

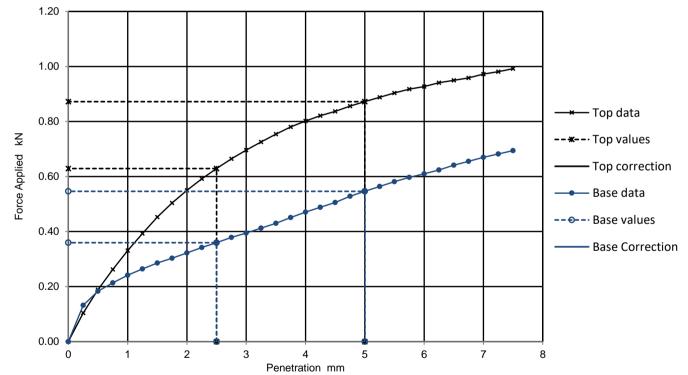
Amount of swell recorded

days mm

Mg/m3

Bulk density 1.66 Mg/m3
Dry density 1.19 Mg/m3

Dry density Water content


39.1 %

Surcharge applied

4.2 kg

3 kPa

RESULTS

Curve	CBR Values, %					
correction applied	2.5mm	5mm	Highest	Average		
No	4.8	4.4	4.8			
No	2.7	2.7	2.7			

Water Content
%
38.8
30.6

Approved
Sanaz Sayehvand

Method of Preparation: BS1377: Part 2: 2022, clause 15.2, Recompacted with specified standard effort using kg rammer

Method of Test: BS1377: Part 2: 2022, clause 15.4, Penetration test procedure to determine California Bearing Ratio (CBR)

TOP

Site: Rosefield Solar Farm Job Number: 2282314

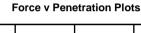
Client: **EDF** Page: 30

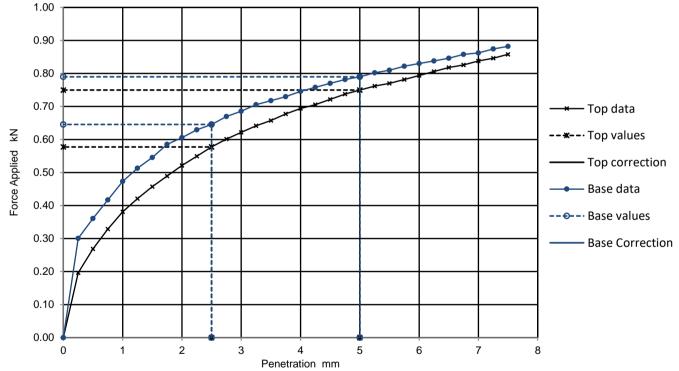
Determination of California Bearing Ratio (CBR)

Borehole / Trial Pit	Depth (m)	Sample	% Passing 20mm Sieve	Description
TP(C)011	0.20	B2	100%	Brown silty CLAY

Specimen Preparation

Condition Not soaked Soaking details


Recompacted with specified standard effort using kg Details Period of soaking days rammer Time to surface days


Amount of swell recorded mm Initial Specimen details Bulk density Dry density after soaking 1.94 Mg/m3 Mg/m3

> Dry density 1.50 Mg/m3

Water content Surcharge applied 4.2 29.1 % kg

kPa

RESULTS

Curve		CBR	Values, %	
correction applied	2.5mm	5mm	Highest	Average
No	4.4	3.7	4.4	4.6
No	4.9	3.9	4.9	4.0

Water Content
%
27.2
27.1

Approved
Sanaz Sayehvand

Method of Preparation: BS1377: Part 2: 2022, clause 15.2, Recompacted with specified standard effort using kg rammer

Method of Test: BS1377: Part 2: 2022, clause 15.4, Penetration test procedure to determine California Bearing Ratio (CBR)

TOP

Site: Rosefield Solar Farm

Job Number: 2282314

Client: EDF Page: 31

Determination of California Bearing Ratio (CBR)

Borehole / Trial Pit	Depth (m)	Sample	% Passing 20mm Sieve	Description
TP002	0.30	B2	99.70%	Brown silty CLAY

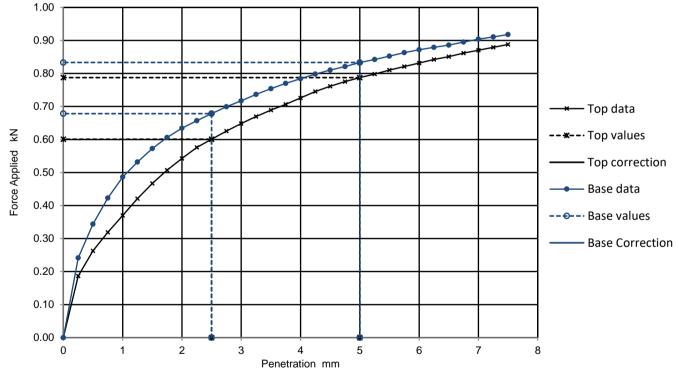
Specimen Preparation

Condition Soaking details Not soaked

Details Recompacted with specified standard effort using kg rammer Period of soaking days days

Time to surface days


Amount of swell recorded mm


Initial Specimen details Bulk density 1.79 Mg/m3 Dry density after soaking Mg/m3

Dry density 1.35 Mg/m3

Water content 33 % Surcharge applied 4.2 kg

3 kPa

RESULTS

Curve		CBR	Values, %	
correction applied	2.5mm	5mm	Highest	Average
No	4.6	3.9	4.6	4.8
No	5.1	4.2	5.1	4.0

Water Content
%
33.5
33.6

Approved
Sanaz Sayehvand

Method of Preparation: BS1377: Part 2: 2022, clause 15.2, Recompacted with specified standard effort using kg rammer

Method of Test: BS1377: Part 2: 2022, clause 15.4, Penetration test procedure to determine California Bearing Ratio (CBR)

TOP

Site: Rosefield Solar Farm

Job Number: 2282314

Client: EDF Page: 32

Determination of California Bearing Ratio (CBR)

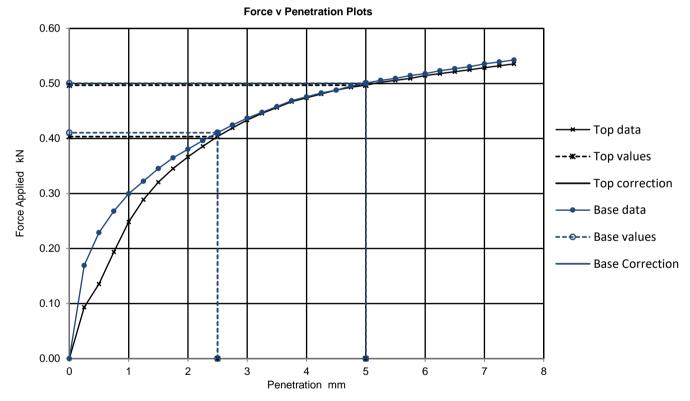
Borehole / Trial Pit	Depth (m)	Sample	% Passing 20mm Sieve	Description
TP003	0.30	B2	99.70%	Brown silty CLAY

Specimen Preparation

Condition Soaking details Not soaked

Details Recompacted with specified standard effort using kg rammer Period of soaking days days

Time to surface days


Amount of swell recorded mm

Initial Specimen details Bulk density 1.80 Mg/m3 Dry density after soaking Mg/m3

Dry density 1.31 Mg/m3

Water content 37.2 % Surcharge applied 4.2 kg

3 kPa

RESULTS

Curve	CBR Values, %							
correction applied	2.5mm	5mm Highest		Average				
No	3.1	2.5	3.1	3.1				
No	3.1	2.5	3.1	3.1				

Water Content
%
38
37.1

Approved
Sanaz Sayehvand

Method of Preparation: BS1377: Part 2: 2022, clause 15.2, Recompacted with specified standard effort using kg rammer

Method of Test: BS1377: Part 2: 2022, clause 15.4, Penetration test procedure to determine California Bearing Ratio (CBR)

TOP

Site: Rosefield Solar Farm Job Number: 2282314

Client: **EDF** Page: 33

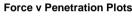
Determination of California Bearing Ratio (CBR)

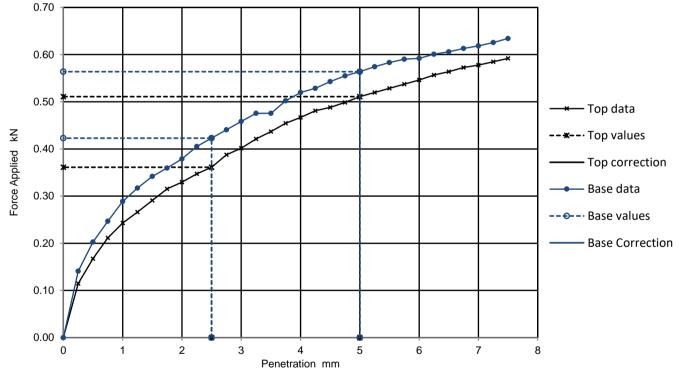
Borehole / Trial Pit	Depth (m)	Sample	% Passing 20mm Sieve	Description
TP014	0.30	B2	100%	Brown silty CLAY

Specimen Preparation

Condition Not soaked Soaking details

Recompacted with specified standard effort using kg Details Period of soaking days rammer Time to surface days


Amount of swell recorded mm


Initial Specimen details Dry density after soaking Bulk density 1.76 Mg/m3 Mg/m3

> Dry density 1.27 Mg/m3

Water content Surcharge applied 4.2 39 % kg

kPa

RESULTS

Curve	CBR Values, %							
correction applied	2.5mm	2.5mm 5mm		Average				
No	2.7	2.6	2.7	3.0				
No	3.2	2.8	3.2	3.0				

Water Content	_
%	
43	
42.8	

Approved
Sanaz Sayehvand

Method of Preparation: BS1377: Part 2: 2022, clause 15.2, Recompacted with specified standard effort using kg rammer

Method of Test: BS1377: Part 2: 2022, clause 15.4, Penetration test procedure to determine California Bearing Ratio (CBR)

Remarks:

TOP

BASE

Result reported relates only to the sample tested.

Final Test Report - 2282314 / 1

Site:	Rosefield Solar Farm
Job Number:	2282314

EDF

All opinions and interpretations contained within this report are outside of our Scope of Accreditation.

This test report shall not be reproduced, except in full and only with the written permission of lan Farmer Associates Ltd.

Samples will be retained for 28 days from date of issue of the final test report before being disposed of, unless we receive written instruction to the contrary.

Report End

Report Issue Date: 07/01/2025

Originating Client:

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 24/12031

Issue Number: 1 **Date:** 16 December, 2024

Client: Ian Farmer Associates (Newcastle) Lab

Unit 4, Faraday Close

Pattinson North Industrial Estate

Washington Tyne and Wear NE38 8QJ

Project Manager:

Project Name: Rosefield Solar Farm

Project Ref: 2282314
Order No: P7543086
Date Samples Received: 11/12/24
Date Instructions Received: 16/12/24
Date Analysis Completed: 16/12/24

Approved by:

Deputy Client Services Supervisor

Lab Sample ID	24/12031/1	24/12031/2	24/12031/3	24/12031/4	24/12031/5	24/12031/6	24/12031/7			
Client Sample No	4	5	5	5	7	3	5			
Client Sample ID	HP(C)007	HP(C)010	HP026	HP027	TP(C)001	TP(C)011	TP012			
Depth to Top	1.40	0.50	0.75	0.75	1.90	0.80	1.40			
Depth To Bottom									tion	
Date Sampled		06-Nov-24	06-Nov-24	06-Nov-24			06-Nov-24		Detection	e
Sample Type	SOIL - D	s	of	Method ref						
Sample Matrix Code	6A	6AE	3A	6A	6A	6A	6A	Units	Limit	Meth
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	% w/w	0.1	A-T-044
pH BRE _D M#	7.49	8.19	8.34	8.16	8.49	8.23	8.15	рН	0.01	A-T-031s
Sulphate BRE (water sol 2:1) _D M#	-	33	155	20	-	-	348	mg/l	10	A-T-026s
Sulphate BRE (acid sol) _D M#	-	0.02	0.09	0.03			0.10	% w/w	0.02	A-T-028s
Sulphur BRE (total) _D	-	0.01	0.05	0.02	-	-	0.04	% w/w	0.01	A-T-024s

Lab Sample ID	24/12031/8	24/12031/9	24/12031/10	24/12031/11	24/12031/12	24/12031/13			
Client Sample No	9	13	10	14	5	7			
Client Sample ID	WS015	WS015	WS016	WS016	WS018	WS018			
Depth to Top	2.00	4.00	1.80	3.70	1.00	1.90			
Depth To Bottom								ion	
Date Sampled		04-Nov-24		04-Nov-24	05-Nov-24			Detection	je
Sample Type	SOIL - B	SOIL - D	SOIL - D	SOIL - D	SOIL - D	SOIL - D	S S	t of D	Method ref
Sample Matrix Code	6A	1A	6AE	3A	6AE	6A	Units	Limit of	Meth
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	% w/w	0.1	A-T-044
pH BRE _D M#	8.36	8.44	7.98	7.91	8.28	8.25	рН	0.01	A-T-031s
Sulphate BRE (water sol 2:1) _D ^{M#}	51	290	2070	1980	24	241	mg/l	10	A-T-026s
Sulphate BRE (acid sol) _D M#	0.03	0.06	3.60	2.31	<0.04	0.07	% w/w	0.02	A-T-028s
Sulphur BRE (total) _D	0.02	0.02	1.49	0.93	0.01	0.04	% w/w	0.01	A-T-024s

Report Notes

- •This report shall not be reproduced, except in full, without written approval from Envirolab.
- •The client Sample No, Client Sample ID, Depth to top, Depth to Bottom and Date Sampled are all <u>provided by the client</u> and can affect the validity of results.
 •The results reported herein relate only to the material supplied to the laboratory.
 •The residue of any samples contained within this report, and any received within the same delivery, will be disposed of **four weeks** after the initial
- scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.
- •Analytical results reflect the quality of the sample at the time of analysis only.
- •Opinions and Interpretations expressed are outside our scope of accreditation.
- •A deviating sample report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.
- •If a sample is outside of the calibration range or affected by interferences then it may need diluting. This will result in the limit of detection (LOD) being raised.
- *Subcontracted Analysis: Please see the appended report for any deviations, current LODs and accreditation status of the test.

Key

1103	
Superscript "#"	Accredited to ISO 17025
Superscript "M"	Accredited to MCertS
Superscript "U"	Individual result not accredited
None of the above symbols	Analysis unaccredited
Subscript "A"	Analysis performed on as-received Sample
Subscript "D"	Analysis performed on the dried sample, crushed to pass 2mm sieve.
Subscript "D" on Asbestos	Analysis performed on a dried aliquot of sample provided.
Subscript "^"	Analysis has dependant options against results. Details appear in the comments of your Sample receipt
IS	Insufficient Sample for analysis
US	Unsuitable Sample for analysis
NDP	No Determination Possible
NAD	No Asbestos Detected
Trace	Asbestos found not suitable for Gravimetric Quantification – not enough to accurately weigh.
N/A	Not applicable

Asbestos

Identification: Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis

"Trace Asbestos Identified" will be reported if there is not enough present to verify the type.

Quantification: Generally a 2 stage process including visual identification, hand picking and weighing, and fibre counting. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking

and weighing (normally if the asbestos is present as free fibres). "TRACE" will be reported as a quantification result.

PLEASE INFORM THE LABORATORY IF YOU WOULD LIKE THE STAGE 3 SEDIMENTATION PROCESS CARRIED OUT. Note this will be subcontracted.

Assigned Matrix Codes

1	SAND	6	CLAY/LOAM	Α	Contains Stones
2	LOAM	7	OTHER	В	Contains Construction Rubble
3	CLAY	8	Asbestos Bulk (Only Asbestos ID accredited)	С	Contains visible hydrocarbons
4	LOAM/SAND	9	Incinerator Ash (some Metals accredited)	D	Contains glass / metal
5	SAND/CLAY			Е	Contains roots / twigs
Note:	7 8 9 matrices are	not co	overed by our ISO 17025 or MCertS accreditation, unless state	d ahove	

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts

All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH by method A-T-007:

For waters, free and visible oils are excluded from the sample used for analysis, so the reported result represents the dissolved phase only. Results "with Clean up" indicates samples cleaned up with Silica during extraction.

EPH CWG (method A-T-055) from TPH CWG:

EPH CWG results have humics mathematically subtracted through instrument calculation.

Where these humic substances have been identified in any IDs from "TPH CWG with clean up" please note that the concentration is NOT included in the quantified results but present in the ID for information.

Electrical Conductivity of water by method A-T-037:

Results greater than 12900µS/cm @ 250C / 11550µS/cm @ 200C fall outside the calibration range and as such are unaccredited.

Please contact your client manager if you require any further information.

Envirolab Deviating Samples Report

Hattersley Science & Technology Park, Stockport Road, Hattersley, SK14 3QU Tel. 0161 368 4921 email. ask@envlab.co.uk

Client: Ian Farmer Associates (Newcastle) Lab, Unit 4, Faraday Close, Pattinson North

Project No: 24/12031

Industrial Estate, Washington, Tyne and Wear, NE38 8QJ

Date Received: 11/12/2024 (am)

Project: Rosefield Solar Farm Cool Box Temperatures (°C): 8.8

Clients Project No: 2282314

Lab Sample ID	24/12031/1	24/12031/2	24/12031/3	24/12031/4	24/12031/5	24/12031/6	24/12031/7	24/12031/8	24/12031/9	24/12031/10	24/12031/11	24/12031/12
Client Sample No	4	5	5	5	7	3	5	9	13	10	14	5
Client Sample ID/Depth	HP(C)007 1.40m	HP(C)010 0.50m	HP026 0.75m	HP027 0.75m	TP(C)001 1.90m	TP(C)011 0.80m	TP012 1.40m	WS015 2.00m	WS015 4.00m	WS016 1.80m	WS016 3.70m	WS018 1.00m
Date Sampled		06/11/24	06/11/24	06/11/24			06/11/24		04/11/24		04/11/24	05/11/24
Deviation Code												
E (no date)	✓	✓			✓	✓	✓	✓	✓	✓	✓	✓
F		✓	✓	✓			✓		✓		✓	✓

Lab Sample ID	24/12031/13
Client Sample No	7
Client Sample ID/Depth	WS018
	1.90m
Date Sampled	
Deviation Code	
E (no date)	✓
F	

Key

E (no date)

No sampling date provided (all results affected if not provided)

Maximum holding time exceeded between sampling date and analysis for analytes listed below

HOLDING TIME EXCEEDANCES

Lab Sample ID	24/12031/2	24/12031/3	24/12031/4	24/12031/7	24/12031/9	24/12031/11	24/12031/12
Client Sample No	5	5	5	5	13	14	5
Client Sample ID/Depth	HP(C)010 0.50m	HP026 0.75m	HP027 0.75m	TP012 1.40m	WS015 4.00m	WS016 3.70m	WS018 1.00m
Date Sampled	06/11/24	06/11/24	06/11/24	06/11/24	04/11/24	04/11/24	05/11/24
Sulphate BRE (water sol 2:1)	✓	√	√	✓	✓	✓	✓

Lab Sample ID	24/12031/2	24/12031/3	24/12031/4	24/12031/7	24/12031/9	24/12031/11	24/12031/12
Client Sample No	5	5	5	5	13	14	5
Client Sample ID/Depth	HP(C)010 0.50m	HP026 0.75m	HP027 0.75m	TP012 1.40m	WS015 4.00m	WS016 3.70m	WS018 1.00m
Date Sampled	06/11/24	06/11/24	06/11/24	06/11/24	04/11/24	04/11/24	05/11/24
Sulphate BRE (acid sol)	✓	✓	✓	✓	✓	✓	✓

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

Envirolab Analysis Dates

Lab Sample ID	24/12031/1	24/12031/2	24/12031/3	24/12031/4	24/12031/5	24/12031/6	24/12031/7	24/12031/8	24/12031/9	24/12031/10	24/12031/11	24/12031/12
Client Sample No	4	5	5	5	7	3	5	9	13	10	14	5
Client Sample ID/Depth	HP(C)007 1.40m	HP(C)010 0.50m	HP026 0.75m	HP027 0.75m	TP(C)001 1.90m	TP(C)011 0.80m	TP012 1.40m	WS015 2.00m	WS015 4.00m	WS016 1.80m	WS016 3.70m	WS018 1.00m
Date Sampled		06/11/24	06/11/24	06/11/24			06/11/24		04/11/24		04/11/24	05/11/24
A-T-024s		13/12/2024	13/12/2024	13/12/2024			13/12/2024	13/12/2024	13/12/2024	13/12/2024	16/12/2024	13/12/2024
A-T-026s		13/12/2024	13/12/2024	13/12/2024			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
A-T-028s		13/12/2024	13/12/2024	13/12/2024			13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
A-T-031s	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
A-T-044	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024

Lab Sample ID	24/12031/13
Client Sample No	7
Client Sample ID/Depth	WS018
	1.90m
Date Sampled	
A-T-024s	13/12/2024
A-T-026s	13/12/2024
A-T-028s	13/12/2024
A-T-031s	13/12/2024
A-T-044	13/12/2024

The above dates are the analysis completion dates, please note that these are not necessarily the date that the analysis was weighed/extracted.

End of Report

Appendix F Chemical Laboratory Testing Results

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 24/11960

Issue Number: 1 **Date:** 13 December, 2024

Client: Central Alliance

Alliance House South Park Way South Park Way

Wakefield 41 Business Park

Wakefield WF2 0XJ

Project Manager: Lab results/

Project Name: Rosefield Solar Farm

Project Ref: 2372536 Order No: N/A

Date Samples Received: 07/11/24
Date Instructions Received: 09/12/24
Date Analysis Completed: 13/12/24

Approved by:

Client Service Manager

						ject Kei. 23				
Lab Sample ID	24/11960/2	24/11960/3	24/11960/6	24/11960/7	24/11960/8	24/11960/12	24/11960/14			
Client Sample No	1	1	2	3	2	1	1			
Client Sample ID	HP(HR)004	HP(HR)005	HP008	HP011	HP012	HP025	HP027			
Depth to Top	0.20	0.20	0.20	0.50	0.15	0.10	0.20			
Depth To Bottom									ion	
Date Sampled	07-Nov-24	07-Nov-24	04-Nov-24	04-Nov-24	04-Nov-24	05-Nov-24	06-Nov-24		etect	75
Sample Type	SOIL - ES	SOIL - ES	_{so}	Limit of Detection	Method ref					
Sample Matrix Code	6AE	6AE	6AE	6A	6AE	6AE	6A	Units	Limi	Meth
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	% w/w	0.1	A-T-044
Cyanide (free) _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-042sFCN
Cyanide (total) _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-042sTCN
Arsenic _D ^{M#}	9	13	10	6	6	12	7	mg/kg	1	A-T-024s
Cadmium _D ^{M#}	0.6	0.7	0.6	<0.5	<0.5	0.5	<0.5	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	20	21	17	12	17	13	13	mg/kg	1	A-T-024s
Chromium _D ^{M#}	35	45	49	33	55	47	52	mg/kg	1	A-T-024s
Lead _D ^{M#}	24	28	24	10	20	23	14	mg/kg	1	A-T-024s
Mercury _D	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	26	32	29	25	29	29	33	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-024s
Zinc _D M#	110	257	80	48	79	86	90	mg/kg	5	A-T-024s

Lab Sample ID	24/11960/2	24/11960/3	24/11960/6	24/11960/7	24/11960/8	24/11960/12	24/11960/14			
Client Sample No	1	1	2	3	2	1	1			
Client Sample ID	HP(HR)004	HP(HR)005	HP008	HP011	HP012	HP025	HP027			
Depth to Top	0.20	0.20	0.20	0.50	0.15	0.10	0.20			
Depth To Bottom									ion	
Date Sampled	07-Nov-24	07-Nov-24	04-Nov-24	04-Nov-24	04-Nov-24	05-Nov-24	06-Nov-24		Detection	et.
Sample Type	SOIL - ES	SOIL - ES	s	₽	Method ref					
Sample Matrix Code	6AE	6AE	6AE	6A	6AE	6AE	6A	Units	Limit	Meth
Asbestos in Soil (inc. matrix) ^										
Asbestos in soil _D #	NAD	NAD	NAD	NAD	NAD	NAD	NAD			A-T-045
Asbestos Matrix (visual) _D	-	-	-	-	-	-	-			A-T-045
Asbestos Matrix (microscope) _D	-	-	-	-	-	-	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A	N/A	N/A	N/A	N/A			A-T-045

					Cilent F10	ect Ref: 23	12330			
Lab Sample ID	24/11960/2	24/11960/3	24/11960/6	24/11960/7	24/11960/8	24/11960/12	24/11960/14			
Client Sample No	1	1	2	3	2	1	1			
Client Sample ID	HP(HR)004	HP(HR)005	HP008	HP011	HP012	HP025	HP027			
Depth to Top	0.20	0.20	0.20	0.50	0.15	0.10	0.20			
Depth To Bottom									tion	
Date Sampled	07-Nov-24	07-Nov-24	04-Nov-24	04-Nov-24	04-Nov-24	05-Nov-24	06-Nov-24		Limit of Detection	eĘ
Sample Type	SOIL - ES	SOIL - ES	s	t of 🏻	Method ref					
Sample Matrix Code	6AE	6AE	6AE	6A	6AE	6AE	6A	Units	Limi	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene ^{M#}	0.08	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.10	0.06	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.13	0.09	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A M#	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A M#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	0.23	0.15	<0.08	<0.08	<0.08	<0.08	0.17	mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A M#	0.07	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.07	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	0.20	0.13	<0.07	<0.07	<0.07	<0.07	0.15	mg/kg	0.07	A-T-019s
Total PAH-16MS _A M#	0.81	0.43	<0.08	<0.08	<0.08	<0.08	0.39	mg/kg	0.01	A-T-019s

				••	,jeot			
Lab Sample ID	24/11960/16	24/11960/17						
Client Sample No	1	1						
Client Sample ID	TP(C)011	TP002						
Depth to Top	0.10	0.15						
Depth To Bottom							ion	
Date Sampled	08-Nov-24	06-Nov-24					etect	75
Sample Type	SOIL - ES	SOIL - ES				· .	Limit of Detection	Method ref
Sample Matrix Code	6A	6AE				Units	Li mi	Meth
% Stones >10mm _A	<0.1	<0.1				% w/w	0.1	A-T-044
Cyanide (free) _A ^{M#}	<1	<1				mg/kg	1	A-T-042sFCN
Cyanide (total) _A ^{M#}	<1	<1				mg/kg	1	A-T-042sTCN
Arsenic _D ^{M#}	9	9				mg/kg	1	A-T-024s
Cadmium _D ^{M#}	<0.5	0.6				mg/kg	0.5	A-T-024s
Copper _D ^{M#}	14	21				mg/kg	1	A-T-024s
Chromium _D ^{M#}	37	43				mg/kg	1	A-T-024s
Lead _D ^{M#}	19	30				mg/kg	1	A-T-024s
Mercury _D	<0.17	<0.17				mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	25	26				mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1				mg/kg	1	A-T-024s
Zinc _D M#	67	92				mg/kg	5	A-T-024s

				,			
Lab Sample ID	24/11960/16	24/11960/17					
Client Sample No	1	1					
Client Sample ID	TP(C)011	TP002					
Depth to Top	0.10	0.15					
Depth To Bottom						tion	
Date Sampled	08-Nov-24	06-Nov-24				of Detection	e
Sample Type	SOIL - ES	SOIL - ES			s	t of 🗅	Method ref
Sample Matrix Code	6A	6AE			Units	Limit	Meti
Asbestos in Soil (inc. matrix) ^							
Asbestos in soil _D #	NAD	NAD					A-T-045
Asbestos Matrix (visual) _D	-	-					A-T-045
Asbestos Matrix (microscope) _D	-	-					A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A					A-T-045

				 ect Rei. 23			
Lab Sample ID	24/11960/16	24/11960/17					
Client Sample No	1	1					
Client Sample ID	TP(C)011	TP002					
Depth to Top	0.10	0.15					
Depth To Bottom						ion	
Date Sampled	08-Nov-24	06-Nov-24				etect	7.
Sample Type	SOIL - ES	SOIL - ES				Limit of Detection	Method ref
Sample Matrix Code	6A	6AE			Units	Limit	Meth
PAH-16MS							
Acenaphthene _A ^{M#}	<0.01	<0.01			mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01			mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02			mg/kg	0.02	A-T-019s
Benzo(a)anthracene ^{A#}	<0.04	<0.04			mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	<0.04			mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	<0.05			mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05			mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07			mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06			mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04			mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	<0.08	<0.08			mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01			mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03	<0.03			mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03			mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	<0.03	<0.03			mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07			mg/kg	0.07	A-T-019s
Total PAH-16MS _A M#	<0.08	<0.08			mg/kg	0.01	A-T-019s

Report Notes

- •This report shall not be reproduced, except in full, without written approval from Envirolab.
- •The client Sample No, Client Sample ID, Depth to top, Depth to Bottom and Date Sampled are all <u>provided by the client</u> and can affect the validity of results.
 •The results reported herein relate only to the material supplied to the laboratory.
 •The residue of any samples contained within this report, and any received within the same delivery, will be disposed of **four weeks** after the initial
- scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.
- •Analytical results reflect the quality of the sample at the time of analysis only.
- •Opinions and Interpretations expressed are outside our scope of accreditation.
- •A deviating sample report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.
- •If a sample is outside of the calibration range or affected by interferences then it may need diluting. This will result in the limit of detection (LOD) being raised.
- *Subcontracted Analysis: Please see the appended report for any deviations, current LODs and accreditation status of the test.

Kov

ney	
Superscript "#"	Accredited to ISO 17025
Superscript "M"	Accredited to MCertS
Superscript "U"	Individual result not accredited
None of the above symbols	Analysis unaccredited
Subscript "A"	Analysis performed on as-received Sample
Subscript "D"	Analysis performed on the dried sample, crushed to pass 2mm sieve.
Subscript "D" on Asbestos	Analysis performed on a dried aliquot of sample provided.
Subscript "^"	Analysis has dependant options against results. Details appear in the comments of your Sample receipt
IS	Insufficient Sample for analysis
US	Unsuitable Sample for analysis
NDP	No Determination Possible
NAD	No Asbestos Detected
Trace	Asbestos found not suitable for Gravimetric Quantification – not enough to accurately weigh.
N/A	Not applicable

Asbestos

Identification: Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis

"Trace Asbestos Identified" will be reported if there is not enough present to verify the type.

Quantification: Generally a 2 stage process including visual identification, hand picking and weighing, and fibre counting. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres). "TRACE" will be reported as a quantification result.

PLEASE INFORM THE LABORATORY IF YOU WOULD LIKE THE STAGE 3 SEDIMENTATION PROCESS CARRIED OUT. Note this will be subcontracted.

Assigned Matrix Codes

1	SAND	6	CLAY/LOAM	Α	Contains Stones			
2	LOAM	7	OTHER	В	Contains Construction Rubble			
3	CLAY	8	Asbestos Bulk (Only Asbestos ID accredited)	С	Contains visible hydrocarbons			
4	LOAM/SAND	9	Incinerator Ash (some Metals accredited)	D	Contains glass / metal			
5	SAND/CLAY			Е	Contains roots / twigs			
Note:	Note: 7.8.9 matrices are not covered by our ISO 17025 or MCertS accreditation, unless stated above.							

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts

All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH by method A-T-007:

For waters, free and visible oils are excluded from the sample used for analysis, so the reported result represents the dissolved phase only. Results "with Clean up" indicates samples cleaned up with Silica during extraction.

EPH CWG (method A-T-055) from TPH CWG:

EPH CWG results have humics mathematically subtracted through instrument calculation.

Where these humic substances have been identified in any IDs from "TPH CWG with clean up" please note that the concentration is NOT included in the quantified results but present in the ID for information.

Electrical Conductivity of water by method A-T-037:

Results greater than 12900µS/cm @ 250C / 11550µS/cm @ 200C fall outside the calibration range and as such are unaccredited.

Please contact your client manager if you require any further information.

Envirolab Deviating Samples Report

Hattersley Science & Technology Park, Stockport Road, Hattersley, SK14 3QU email. ask@envlab.co.uk Tel. 0161 368 4921

Client: Central Alliance, Alliance House, South Park Way, South Park Way, Wakefield **Project No:**

24/11960

41 Business Park, Wakefield, WF2 0XJ

Date Received:

09/12/2024 (am)

Rosefield Solar Farm **Project:**

Cool Box Temperatures (°C): 12.1-13.0, 10.4-10.5

Clients Project No: 2372536

Lab Sample ID	24/11960/2	24/11960/3	24/11960/6	24/11960/7	24/11960/8	24/11960/12	24/11960/14	24/11960/16	24/11960/17
Client Sample No	1	1	2	3	2	1	1	1	1
Client Sample ID/Depth	HP(HR)004 0.20m	HP(HR)005 0.20m	HP008 0.20m	HP011 0.50m	HP012 0.15m	HP025 0.10m	HP027 0.20m	TP(C)011 0.10m	TP002 0.15m
Date Sampled	07/11/24	07/11/24	04/11/24	04/11/24	04/11/24	05/11/24	06/11/24	08/11/24	06/11/24
Deviation Code									
F	✓	✓	✓	✓	✓	✓	✓	✓	✓

Key F

Maximum holding time exceeded between sampling date and analysis for analytes listed below

HOLDING TIME EXCEEDANCES

Lab Sample ID	24/11960/2	24/11960/3	24/11960/6	24/11960/7	24/11960/8	24/11960/12	24/11960/14	24/11960/16	24/11960/17
Client Sample No	1	1	2	3	2	1	1	1	1
Client Sample ID/Depth	HP(HR)004 0.20m	HP(HR)005 0.20m	HP008 0.20m	HP011 0.50m	HP012 0.15m	HP025 0.10m	HP027 0.20m	TP(C)011 0.10m	TP002 0.15m
Date Sampled	07/11/24	07/11/24	04/11/24	04/11/24	04/11/24	05/11/24	06/11/24	08/11/24	06/11/24
PAH-16MS	✓	✓	✓	✓	✓	✓	✓	✓	✓
Cyanide (free)	✓	✓	✓	✓	✓	✓	✓	✓	✓
Cyanide (total)	✓	✓	✓	✓	✓	✓	✓	✓	✓

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

Envirolab Analysis Dates

Lab Sample ID	24/11960/2	24/11960/3	24/11960/6	24/11960/7	24/11960/8	24/11960/12	24/11960/14	24/11960/16	24/11960/17
Client Sample No	1	1	2	3	2	1	1	1	1
Client Sample ID/Depth	HP(HR)004 0.20m	HP(HR)005 0.20m	HP008 0.20m	HP011 0.50m	HP012 0.15m	HP025 0.10m	HP027 0.20m	TP(C)011 0.10m	TP002 0.15m
Date Sampled	07/11/24	07/11/24	04/11/24	04/11/24	04/11/24	05/11/24	06/11/24	08/11/24	06/11/24
A-T-019s	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024	13/12/2024
A-T-024s	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024
A-T-042sFCN	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024
A-T-042sTCN	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024
A-T-044	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024
A-T-045	11/12/2024	11/12/2024	11/12/2024	10/12/2024	10/12/2024	10/12/2024	11/12/2024	11/12/2024	11/12/2024

The above dates are the analysis completion dates, please note that these are not necessarily the date that the analysis was weighed/extracted.

End of Report

rosefieldsolarfarm.co.uk